个人简介
一、个人简介:
刘桂强,2007年获得博士学位。2015年日本神户大学工学部访问研究员(从事纳米材料与器件的研究)。2020年担任Journal of Physics D: Applied Physics专刊“Metamaterials for optical absorption and sensing”的客座主编(Guest editor)。中国光学学会和物理学会终身会员、江西省光学学会理事。长期从事超材料、新型光电功能材料、光电传感、表面增强拉曼及太阳能电池等研究工作。入选“江西省主要学科学术和技术带头人”和“江西省杰出青年人才资助计划”。在Nanophotonics、Carbon、Solar Energy Materials and Solar Cells、Optics Express和Sensors and Actuators B等国际知名学术期刊上发表论文90余篇,其中SCI一区前封面论文1篇、英国皇家学院物理学会IOP亮点报道论文2篇、ESI高引论文6篇。授权国家发明专利9项。主持国家自然科学基金4项、省级科研项目8项。研究工作先后获江西省高等学校科技成果奖一等奖、江西省自然科学奖三等奖。讲授《纳米材料与纳米光子学》、《凝聚态前沿专题》等研究生课程。培养研究生20余人。
五、授权发明专利
刘正奇,刘晓山,刘桂强.基于半导体超表面结构的三频带近红外吸收器,授权公告号:CN106711271B
刘正奇,刘桂强.基于金属膜层-半导体共振腔复合结构的多频段光完美吸收器,授权公告号:CN106784030B.
刘正奇,刘怡,汤莉,黄镇平,刘晓山,刘桂强.一种光学吸收型温度传感器,授权公告号:CN107907237B
刘正奇,邵辉柏,刘晓山,黄珊,刘桂强.一种宽波段光全吸收器及其制备方法,授权公告号:CN104656170B.
刘桂强,刘正奇,邵辉柏,余美东,黄珊,潘平平,刘晓山,王燕. 一种去除外磁场调控非磁性椭球胶体颗粒三维周期结构中磁流体的方法,授权公告号:CN104693459B.
刘桂强,刘正奇,汤莉,刘怡,陈检,黄振平.一种基于花生状金-硫化铜核壳纳米棒的有机太阳能电池宽频带光吸收层薄膜及其制备方法,授权公告号:CN106935708B.
刘正奇,刘桂强,刘晓山,邵辉柏,黄珊,.三维亚波长金属腔体结构光谱多带光完美吸收等离激元传感器及其制备方法与用途,授权公告号:CN104568849B.
刘正奇,刘怡,汤莉,黄镇平,陈检,刘桂强.一种帽盖状金核/硫化铜壳结构的纳米棒复合材料及其制备方法,授权公告号:CN107116214B.
刘正奇,刘桂强,黄镇平,刘晓山.一种透明电极及其制备方法,授权公告号:CN106847942B
六、科研奖项
[1]光学黑体材料的实验制备、吸收机理及其高品质传感研究. 江西省自然科学奖三等奖, 2019.9.30,编号:Z-18-3-03-R02.
[2]新型光子晶体及其复合结构的制备与特性研究. 江西省高等学校科技成果奖一等奖, 2011.07,编号:J1101014.
七、主持国家级、省级重点项目
[1] 基于高折射介电光学共振单元和金属等离激元晶体的复合型SERS基底的构建及性能研究,2018-2021年,国家自然科学基金,编号:51761015,主持,42万。
[2]基于杂化等离激元共振耦合的金属亚波长结构超窄多频带光透明特性及其传感研究,2016-2019年,国家自然科学基金,编号:11564017,主持,47万。
[3] 光子晶体/贵金属复合结构的表面增强拉曼散射特性及其在单分子检测中的应用,2013-2016年,国家自然科学基金,编号:11264017,主持,63万。
[4] 高质量有、无磁性椭球形胶体颗粒三维光子晶体的自组装、特性及应用,2011-2013年,国家自然科学基金,编号:11004088,主持,23万。
[5] 基于半导体光子结构与贵金属超表面的拼合式超强SERS基底的制备、机理及应用研究,2018-2020年,省科技厅重点项目,编号:20182BCB22002,主持,50万。
[6] 江西省青年科学家培养对象,2014-2016年,省科技厅重点项目,编号:20142BCB23008,主持,10万。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Y. Li, Z. Liu*, P. Pan, X. Liu, G. Fu, Z. Liu, H. Luo, G. Liu*. Semiconductor-nanoantenna-assisted solar absorber for ultra-broadband light trapping, Nanoscale Research Letters, 2020, 15, 76 (SCI二区).
Z. Liu*, G. Liu, X. Liu, G. Fu. Plasmonic sensors with an ultra-high figure of merit, Nanotechnology, 2020, 31, 115208 (SCI二区).
J. Zhou, X. Liu, G. Fu, G. Liu*, P. Tang, W. Yuan, X. Zhan, Z. Liu*. High-performance plasmonic oblique sensors for the detection of ions, Nanotechnology, 2020, 31, 285501 (SCI二区).
G. Liu, Y. Liu, L. Tang, X. Liu, G. Fu, Z. Liu*. Semiconductor-enhanced Raman scattering sensors via quasi-three-dimensional Au/Si/Au structures, Nanophotonics, 2019, 8(6), 1095- 1107 (SCI一区,影响因子IF:6.908).
G. Liu, X. Liu, J. Chen, Y. Li, L. Shi, G. Fu, Z. Liu*. Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters, Solar Energy Materials and Solar Cells, 2019, 190, 20-29 (SCI一区,影响因子IF:6.019).
J. Chen, P. Tang, G. Liu*, Z. Yi, X. Liu, P. Pan, Z. Liu*. Si nano-cavity enabled surface-enhanced Raman scattering signal amplification, Nanotechnology, 2019, 30, 465204 (SCI二区).
L. Tang, Y. Liu, G. Liu*, Q. Chen, Y. Li, L. Shi, Z. Liu*, X. Liu. A novel SERS substrate platform, spatially stacking plasmonic hotspots films, Nanoscale Research Letters, 2019, 14, 94 (SCI二区).
G. Liu, J. Chen, P. Pan, Z. Liu*. Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber, IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3), 4600507 (SCI二区,影响因子IF:4.681).
Y. Li, Z. Liu*, H. Zhang, P. Tang, B. Wu, G. Liu*. Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks, Optics Express, 2019, 27(8), 11809-11818 (SCI二区).
Y. Li, Y. Liu, Z. Liu*, Q. Tang, L. Shi, Q. Chen, B. Wu, G. Liu*, L. Li. Grating-assisted ultra-narrow multispectral plasmonic resonances for sensing application, Applied Physics Express, 2019, 12, 072002 (SCI二区).
L. Shi, Q. Tang, Z. Liu*, Y. Liu, Y. Li,G. Liu*, L. Li. Tunable dual-band plasmonic perfect absorber and its sensing applications, Journal of the Optical Society of America B, 2019, 36(10), 2750-2756.
J. Chen, H. Zhang, G. Liu*, J. Liu, Y. Liu, L. Tang, Z. Liu*. High-quality temperature sensor based on the plasmonic resonant absorber, Plasmonics, 2019, 14(2), 279-283.
Z. Liu*, P. Tang, X. Liu, Z. Yi, G. Liu, Y. Wang, M. Liu. Truncated titanium/semiconductor cones for wide-band solar absorbers, Nanotechnology, 2019, 30(30), 305203 (SCI二区).
M. Yu, Z. Huang, Z. Liu *, J. Chen, Y. Liu, L. Tang, G. Liu*. Annealed gold nanoshells with highly-dense hotspots for large-area efficient Raman scattering substrates, Sensors and Actuators B, 2018, 262, 845-851(SCI一区,影响因子IF:6.393).
G. Liu, Y. Liu, X. Liu, J. Chen, G. Fu, Z. Liu*. Large-area, low-cost, ultra-broadband, infrared perfect absorbers by coupled plasmonic-photonic micro-cavities, Solar Energy Materials and Solar Cells, 2018, 186, 142-148(SCI一区,影响因子IF:6.019).
X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, Z. Liu*. Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers, Carbon, 2018, 140, 362-367(SCI一区,影响因子IF:7.466).
Z. Liu*, G. Liu, Z. Huang, X. Liu, G. Fu. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface, Solar Energy Materials and Solar Cells, 2018, 179, 346-352(SCI一区,影响因子IF:6.019).
G. Liu, Y. Nie, G. Fu, X. Liu, Y. Liu, L. Tang, Z. Liu*. Semiconductor meta-surface based perfect light absorber, Nanotechnology, 2017, 28(16), 165202 (SCI二区).
Z. Huang, J. Chen, Y. Liu, L. Tang, G. Liu*, X. Liu, Z. Liu*. Hybrid metal-semiconductor cavities for multi-band perfect light absorbers and excellent electric conducting interfaces, Journal of Physics D, 2017, 50(33), 335106 (SCI二区).
G. Liu, G. Fu, Z. Liu*, Z. Huang, J. Chen. Partially hollowed ultra-thin dielectric metasurface for transmission manipulation, Opt. Express, 2016, 24, 20580-20585 (SCI二区).
G. Liu*, M. Yu, Z. Liu, P. Pan, X. Liu, S. Huang, Y. Wang. Multi-band high refractive index susceptibility of plasmonic structures with network-type metasurface, Plasmonics, 2016, 11(2), 677-682 (SCI二区).
Z. Cai, G. Liu*, Z. Liu, X. Liu, P. Pan, S. Huang, Y. Wang, M. Liu, H. Gao. Subradiant, superradiant plasmon modes and Fano resonance in a multilayer nanocylinder array standing on a thin metal film, Plasmonics, 2016, 11(2), 683-688 (SCI二区).
Z. Liu*, G. Liu, G. Fu, X. Liu, Y. Wang. Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial, Optics Express, 2016, 24(5), 5020-5025 (SCI二区).
G. Liu, M. Yu, Z. Liu*, X. Liu, S. Huang, P. Pan, Y. Wang, M. Liu, G. Gu. One-process fabrication of metal hierarchical nanostructures with rich nanogaps for highly-sensitive surface-enhanced Raman scattering, Nanotechnology, 2015, 26, 185702 (SCI二区).
Z. Liu*, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pan, G. Liu*. Enhancing refractive index sensing capability with hybrid plasmonic photonic absorbers, Journal of Materials Chemistry C, 2015, 3, 4222~4226 (SCI一区,前封面论文,Front Outside Cover, 影响因子IF:6.641).
Y. Hu, G. Liu*, Z. Liu, X. Liu, X. Zhang, Z. Cai, M. Liu, H. Gao, G. Gu. Extraordinary optical transmission in metallic nanostructures with a plasmonic nanohole array of two connected slot antennas, Plasmonics, 2015, 10, 483-488 (SCI二区).
Z. Liu*, Y. Nie, W. Yuan, X. Liu, S. Huang, J. Chen, H. Gao, G. Gu, G. Liu*. Optical cavity-assisted broadband optical transparency of a plasmonic metal film, Nanotechnology, 2015, 26, 185701 (SCI二区).
Z. Liu*, X. Liu, S. Huang, P. Pan, J. Chen, G. Liu*, G. Gu. Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation, ACS Applied Materials and Interfaces, 2015, 7, 4962-4968 (SCI一区,影响因子IF:8.456).
X. Zhang, G. Liu*, Z. Liu*, Z. Cai, Y. Hu, X. Liu, G. Fu, H. Gao, S. Huang. Effects of compound rectangular subwavelength hole arrays on enhancing optical transmission, IEEE Photonics Journal, 2015, 7. 4500408 (SCI二区).
Z. Liu*, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, G. Gu. Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals, Sensors and Actuators B, 2015, 215, 480-488 (SCI一区,影响因子IF:6.393).
Z. Liu, G. Liu, X. Liu, S. Huang, Y. Wang, P. Pan, M. Liu. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity, Nanotechnology, 2015, 26, 235702 (SCI二区).