当前位置: X-MOL首页全球导师 国内导师 › 李花兵

个人简介

学习经历 2004.03 - 2008.03 东北大学钢铁冶金博士学位 2002.09 - 2004.09 东北大学钢铁冶金硕士学位 1998.08 - 2002.07 东北大学冶金科学与工程学士学位。 工作经历 2018.07 - 至今,东北大学冶金学院,冶金工程系,博士生导师 2018.01 - 至今,东北大学冶金学院,冶金工程系,长聘教授 2017.01 - 至今,东北大学冶金学院,冶金工程系,教授 2012.07 - 2016.11,太原钢铁(集团)有限公司和东北大学,在职博士后 2010.01 - 2016.12,东北大学材料与冶金学院,钢铁冶金系,副教授 2008.03 - 2009.12,东北大学材料与冶金学院,钢铁冶金研究所,讲师 2005.03 - 2008.02,东北大学材料与冶金学院,钢铁冶金研究所,助教

研究领域

(1)高品质特殊钢冶金理论及新工艺开发 (2)高氮不锈钢加压冶金理论、制备技术及新品种开发 (3)高性能不锈钢冶炼工艺及新品种开发

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

(1)S.C. Zhang, H. Feng, H.B. Li*, et al. Design for improving corrosion resistance of duplex stainless steels by wrapping inclusions with niobium armour, Nature Communications, 2023, 14: 7869. (2)Z.W. Ni, H.C. Zhu*, H.B. Li*, et al. Elucidating the promoting mechanism of nitrogen in the columnar-to-equiaxed transition of steel ingot, International Journal of Heat and Mass Transfer, 2024, 220: 125014. (3)J. Dai, H. Feng,H.B. Li*, et al. Insights into the mechanism of Mo protecting CoCrFeNi HEA from pitting corrosion—A quantitative modelling study on passivation and repassivation processes, Journal of Materials Science & Technology, 2024, 182: 152–164. (4)Y.M. Zhang, Y.X. Hu, H.B. Li*, et al. Martensitic transformation induced planar deformation of AlN nanoprecipitates in high nitrogen stainless steels, International Journal of Plasticity, 2023, 166: 103631. (5)H. Feng, H.B. Li*, J.D. Qu, et al. Unveiling the significant contribution of matrix elements to passivation behaviour and corrosion resistance of alloys by modelling approach, Corrosion Science, 2023, 214, 111014. (6)L.F. Xia, H.B. Li*, H. Feng, et al. Enhanced strength and toughness of high nitrogen stainless bearing steel by controlling interstitial partitioning via V-microalloying, Journal of Materials Science & Technology, 2023, 151: 204–218. (7)H.B. Li*, Y. Han, H. Feng, et al. Enhanced strength-ductility synergy via high dislocation density-induced strain hardening in nitrogen interstitial CrMnFeCoNi high-entropy alloy, Journal of Materials Science & Technology, 2023, 141: 184–192. (8)C.T. Yang, H. Feng, X.B. Chen, Y. Han, H.B. Li*, et al. Enhanced pitting corrosion resistance of CoCrFeMnNi high entropy alloy in the presence of Desulfovibrio vulgaris via nitrogen doping, Journal of Materials Science & Technology, 2023, 139: 92–102. (9)H. Feng, Y. Han, H.B. Li*, et al. Enhancement in impact toughness of CoCrFeMnNi high-entropy alloy via nitrogen addition, Journal of Alloys and Compounds, 2023, 932:167615. (10)Z.Y. He, H.B. Li*, H.C. Zhu, et al. Investigation on Porosity Formation With Pressure Drop Between Dendrite Tip and Root During Pressurized Solidification of 30Cr15Mo1N Ingot,Metallurgical and Materials Transactions B, 2023, 54(6): 3155–3163. (11)H.B. Li*, Z.W. Ni, H.C. Zhu, et al. Elimination mechanism of shrinkage porosity during pressurized solidification process of 19Cr14Mn4Mo1N high-nitrogen steel ingot, Metallurgical and Materials Transactions B, 2023, 54(3): 1422–1433. (12)X.Z. Li, H.B. Li*, H. Feng, et al. Nitrogen Solubility in Molten Ni, Ni-Cr, Ni-Mo and Ni-Cr-Mo Alloys under Pressurized Atmosphere, Metallurgical and Materials Transactions B, 2023, 54(1): 203–212. (13)Z.Y. He, H.B. Li*, H.C. Zhu, et al. Evolution of Precipitated Phase and Dendritic Structure Around Nitrogen Pore in 30Cr15Mo1N Ingot, Metallurgical and Materials Transactions B, 2023, 54(1): 213–220. (14)H.B. Li*, P.C. Lu, H. Feng, et al. Influence Mechanism of Crucible Materials on Cleanliness and Inclusion Characteristics of High-Nitrogen Stainless Bearing Steel During Vacuum Carbon Deoxidation, Metallurgical and Materials Transactions B, 2023, 54(3): 1099–1112. (15)S.X. Yang, H.B. Li*, H. Feng, et al. Effects of Atmosphere and Na2O in Slag on Inclusion Characteristics of Al-Killed Fe–18Cr–18Mn Remelted by (P)ESR Process,Metallurgical and Materials Transactions B, 2023, 54(4): 2229–2243. (16)H.B. Li*, W.C. Jiao, H. Feng, et al. Roles of N-Alloying and austenitizing temperature in tuning the hardness and strengthening–toughening behavior of M42 high-speed steel, Metallurgical and Materials Transactions A, 2023, 54(6): 2451–2469. (17)H. Feng, H.B. Li*, J. Dai, et al. Why CoCrFeMnNi HEA could not passivate in chloride solution? – A novel strategy to significantly improve corrosion resistance of CoCrFeMnNi HEA by N-alloying, Corrosion Science, 2022, 204: 110396. (18)J. Dai, H.B. Li*, H. Feng, et al. Revealing significant effect of nitrogen on prolonging pitting corrosion lifetime of martensitic stainless steel by modelling approach, Corrosion Science, 2022, 203: 110369. (19)H. Feng, J. Dai, H.B. Li*, et al. Sn microalloying enhances corrosion resistance of stainless steel by accelerating heterogeneous nucleation of passive film, Corrosion Science, 2022, 201: 110279. (20)X.J. Li, P. Zhou, H. Feng, Z.H. Jiang, H.B. Li*, et al. Spontaneous passivation of the CoCrFeMnNi high entropy alloy in sulfuric acid solution: The effects of alloyed nitrogen and dissolved oxygen, Corrosion Science, 2022, 196: 110016. (21)S.C. Zhang, H.B. Li*, Z.H. Jiang, et al. Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super-austenitic stainless steel S32654, Journal of Materials Science & Technology, 2022, 115:103-114. (22)J.T. Yu, S.C. Zhang, H.B. Li*, et al. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654, Journal of Materials Science & Technology, 2022, 112:184–194. (23)S.C. Zhang, J.T. Yu, H.B. Li*, et al. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654, Journal of Materials Science & Technology, 2022, 102: 105–114. (24)X.L. Liu, H. Feng, J. Wang, X.F. Chen, P. Jiang, F.P. Yuan, H.B. Li*, et al. Mechanism of dislocation evolution during plastic deformation of nitrogen-doped CoCrFeMnNi high-entropy alloy, Journal of Materials Science & Technology, 2022, 108: 256–269. (25)J.L. Tian, K. Chen, H.B. Li*, et al. Suppressing grain boundary embrittlement via Mo-driven interphase precipitation mechanism in martensitic stainless steel, Materials Science & Engineering A, 2022, 833: 142529. (26)S.C. Zhang, Y.F. Geng, H.B. Li*, et al. Design of a Novel Physical Simulator for Simulating Solidification Process of Continuous Casting Steel Slab, Metallurgical and Materials Transactions B, 2022, 53(6): 4006-4018. (27)H.B. Li*, Z.Y. He, H.C Zhu, et al. Influence Mechanism of Pressure on Nitrogen Bubble Formation During Solidification Process in 30Cr15Mo1N Ingot, Metallurgical and Materials Transactions B, 2022, 53(3): 1721-1732. (28)P.C. Lu, H.B. Li*, H. Feng et al. Improving Cleanliness and Controlling Inclusion Characteristics in High-Nitrogen Stainless Bearing Steels by Optimizing Addition Order and Contents of Mg and Ce, Metallurgical and Materials Transactions B, 2022, 53(3), 1920-1935. (29)H.C. Zhu, H.B. Li*, Z.W. Ni, et al. Effect of Solidification Pressure on Phase Transformation and Precipitated Phases of 30Cr15Mo1N Ingot, Metallurgical and Materials Transactions B, 2022, 53(1), 50-59. (30)H. Feng, P.C. Lu, H.B. Li*, et al. Effect of Mg Pretreatment and Ce Addition on Cleanliness and Inclusion Evolution in High-Nitrogen Stainless Bearing Steels, Metallurgical and Materials Transactions B, 2022, 53(2): 864-876. (31)W.C. Jiao, H.B. Li*, H. Feng, et al. Significant Improvement of Cleanliness and Macro micro-structure of As-cast AISI M42 High Speed Steel by Mg Treatment, Metallurgical and Materials Transactions B, 2022, 53(2): 1196-1211. (32)S.X. Yang, H.B. Li*, H. Feng, et al. Reaction Mechanism and Control Strategy of Aluminum Increase in High Nitrogen Stainless Bearing Steel during Pressurized Electroslag Remelting, Metallurgical and Materials Transactions B, 2022, 53(2): 1148-1161. (33)H. Feng, H.B. Li*, X.Z. Li, et al. Nitrogen Solubility and Gas Nitriding Kinetics in Fe–Cr–Mo–C Alloy Melts under Pressurized Atmosphere, ISIJ International, 2022, 62 (6): 1049–1060. (34)Y. Li, H. Yang, Z.H. Jiang, H.B. Li*, et al. Change of Spinel in High Ca Treament at 38CrMoAl Steel, ISIJ International, 2022, 62(11), 2276–2285. (35)S.C. Zhang, H.B. Li*, M.Z. Ran, et al. Effect of Al2O3 on Viscosity and Refining Ability of High Basicity Slag for Heat-resistant Austenitic Stainless Steel, ISIJ International, 2022, 62(11): 2207–2216. (36)P.C. Lu, H.B. Li*, H. Feng, et al. Formation Mechanism of AlN Inclusion in High-Nitrogen Stainless Bearing Steels, Metallurgical and Materials Transactions B, 52, 2210-2223 (2021). (37)H.C. Zhu, H.B. Li*, Z.Y. He, et al. Effect of Solidification Pressure on Gap Width between H13 Ingot and Mold, Metallurgical and Materials Transactions B, 52, 2210-2223(2021). (38)H. Feng, H.B. Li*, Z.Z. Liu, et al. Cleanliness Control of High Nitrogen Stainless Bearing Steel by Vacuum Carbon Deoxidation in a PVIM Furnace, Metallurgical and Materials Transactions B, 52, 3777-3787 (2021). (39)S.X. Yang, H.B. Li*, H. Feng, et al. Desulfurization Behavior 1 of Fe−18Cr−18Mn Alloy during the Pressurized Electroslag Remelting with Different Atmospheres and Na2O-containing Slags, Metallurgical and Materials Transactions B., 52, 1294-1308(2021). (40)S.X. Yang, H. Feng, H.B. Li*, et al. Nitrogen Solubility in Liquid Fe–Nb, Fe–Cr–Nb, Fe–Ni–Nb and Fe–Cr–Ni–Nb Alloys, ISIJ International, 61(2021): 5, 1498-1505. (41)H.C. Zhu, H.B. Li*, et al. Effect of Pressure on Dendrite Structure and Characteristics of Carbides during Solidification Process of H13 Die Steel Ingot, ISIJ International, 61(2021): 6, 1889-1898. (42)L.C. Zheng, H.B. Li*, et al. Effect of CaF2 on Viscosity and Refining Ability of Highly Basic Slags for Duplex Stainless Steel, ISIJ International, 61(2021): 6, 1784-1793. (43)K. Chen, H.B. Li*, Z.H. Jiang∗, et al. Multiphase microstructure formation and its effect on fracture behavior of medium carbon high silicon high strength steel, Journal of Materials Science & Technology, 72 (2021) 81–92. (44)Y. Han, H.B. Li*, H. Feng, et al. Simultaneous enhancement in strength and ductility of Fe50Mn30Co10Cr10 high-entropy alloy via nitrogen alloying, Journal of Materials Science & Technology, 65 (2021) 210–215. (45)J.L. Tian, W. Wang, H.B. Li*, et al. Understanding main factors controlling high cycle fatigue crack initiation and propagation of high strength maraging stainless steels with Ti addition, Materials Science & Engineering A, 805 (2021) 140589. (46)S.C. Zhang, H.B. Li*, Z.H. Jiang, et al. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654, Journal of Materials Science & Technology, 2020,42, 143-155. (47)S.C. Zhang, H.B. Li*, Z.H. Jiang, et al. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment, Corrosion Science, 2020,163, 108295. (48)J. Dai, H. Feng, H.B. Li*, et al. Nitrogen significantly enhances corrosion resistance of 316L stainless steel in thiosulfate-chloride solution, Corrosion Science, 2020, 174, 108792. (49)W.C. Jiao, H.B. Li*, H. Feng, et al. Evolutions of Micro- and Macrostructure by Cerium Treatment in As-Cast AISI M42 High-Speed Steel, Metallurgical and Materials Transactions B, 51, 2240–2251(2020). (50)H.C. Zhu, H.B. Li*, Z.Y. He, et al. Effect of Pressure on Inclusion Number Distribution During the Solidification Process of H13 Die Steel, Metallurgical and Materials Transactions B, 51, 2976–2992(2020). (51)W.C. Jiao, H.B. Li*,H. Feng, et al. Effect of High Nitrogen Addition on Microstructure and Mechanical Properties of As-cast M42 High Speed Steel, ISIJ International, 60 (2020), 564–572. (52)C.Y. Chen, Z.H. Jiang, Y. Li, M. Sun, Q. Wang, K. Chen and H.B. Li*. State of the Art in the Control of Inclusions in Spring Steel for Automobile - a Review, ISIJ International, 60 (2020), 617–627. (53)J. Yu, F.B. Liu, Z.H. Jiang, H.B. Li*, et al. Effects of Nitrogen Gas Pressure on the Solidification Parameters and As-cast Microstructure Revolution during Pressurized Electroslag Remelting AISI 304 Stainless Steel, ISIJ International, 60 (2020),1684–1692. (54)H.C. Zhu, H.B. Li*, Z.H. Jiang, et al. Quantitative Correlation between Interfacial Heat Transfer Coefficient and Pressure for 19Cr-14Mn-0.9N High Nitrogen Steel Cylindrical Ingot, ISIJ International, 60 (2020), 1978–1984. (55)Y. Han, H.B. Li*, H. Feng, et al. Enhancing the strength and ductility of CoCrFeMnNi high-entropy alloy by nitrogen addition, Materials Science & Engineering A, 789 (2020) 139587. (56)K. Chen, Z.H. Jiang*, F.B. Liu, H.B. Li*, et al. Enhanced mechanical properties by retained austenite in medium–carbon Si-rich microalloyed steel treated by quenching–tempering, austempering and austempering–tempering processes, Materials Science & Engineering A, 790 (2020) 139742. (57)K. Chen, Z.H. Jiang, F.B. Liu, H.B. Li*, et al. Achievement of High Ductility and Ultra-high Strength of V-Nb Microalloyed Spring Steel by Austempered Multiphase Microstructure, Metallurgical and Materials Transactions A, 51, 3565–3575(2020). (58)H. Feng, H.B. Li*, Z.H. Jiang, et al. Designing for high corrosion-resistant high nitrogen martensitic stainless steel based on DFT calculation and pressurized metallurgy method. Corrosion Science, 2019, 158 (2019) 108081. (59)H. Feng, H.B. Li*, W.C. Jiao, et al. Significance of Partial Substitution of C by N on Strengthening and Toughening Mechanisms of High Nitrogen Fe-15Cr-1Mo-C-N Martensitic Stainless Steels. Metallurgical and Materials Transactions A, 2019, 50(11): 4987–4999. (60)W.C. Jiao, H.B. Li*, J. Dai, et al. Effect of partial replacement of carbon by nitrogen on intergranular corrosion behavior of high nitrogen martensitic stainless steels. Journal of Materials Science & Technology,2019, 35 (2019) 2357–2364. (61)J. Yu, F.B. Liu, H.B. Li*, et al. Numerical Simulation and Experimental Investigation of Nitrogen Transfer Mechanism from Gas to Liquid Steel During Pressurized Electroslag Remelting Process. Metallurgical and Materials Transactions B, 2019, 50, 3112~3124. (62)J. Yu, F.B. Liu, H.B. Li*, et al. Effects of mold current on slag skin and heat flow distribution during electroslag remelting at given power input. JOM, 71 (2019)744-753. (63)Z.H. Jiang, G. Xu, Yang Li, H.B. Li*, et al. Effect of Ultra-high Magnesium on SKS51 Liquid Steel Cleanliness and Microstructure. ISIJ International, 59 (2019) 1234-1241. (64)H. Feng, Z.H. Jiang, H.B. Li*, et al. Influence of nitrogen on corrosion behaviour of high nitrogen martensitic stainless steels manufactured by pressurized metallurgy. Corrosion Science, 144 (2018) 288-300. (65)H. Feng, H.B. Li*, X.L. Wu, et al.Effect of nitrogen on corrosion behaviour of a novel high nitrogen medium-entropy alloy CrCoNiN manufactured by pressurized metallurgy. Journal of Materials Science & Technology, 2018, 34: 1781–1790. (66)Z.H. Jiang, H.C. Zhu, H.B. Li*, et al. A Novel Method for Improving Cast Structure of M42 High Speed Steel by Pressurized Metallurgy Technology, ISIJ International, 2018, 58 (7): 1267–1274. (67)Z.H. Jiang, H.C. Zhu, H.B. Li*, et al. Effect of solidification pressure on interfacial heat transfer and solidification structure of 19Cr14Mn0.9N high nitrogen steel, ISIJ International, 2018, 58 (1): 107–113. (68)Y. Li, C.Y. Chen, Z.H. Jiang, M. Sun, H. Hu and H.B. Li*. Application of Alkali Oxides in LF Refining Slag for Enhancing Inclusion Removal in C96V Saw Wire Steel, ISIJ International, 2018, 58 (7): 1232–1241. (69)C.Y. Chen, Z.H. Jiang, Y. Li, M. Sun, G.Q. Qin, C.L. Yao, Q. Wang and H.B. Li*. Effect of Rb2O on Inclusion Removal in C96V Saw Wire Steels Using Low-Basicity LF Refining Slag, ISIJ International, 2018, 58 (2018) 2032-2041. (70)H.C. Zhu, Z.H. Jiang, H.B. Li*. Effect of Solidification Pressure on Thermodynamic and Kinetic Parameters of 19Cr14Mn4Mo0.9N High Nitrogen Steel. Steel Research International, 2018, 89(5): 1700475. (71)H.C. Zhu, Z.H. Jiang*, H. B. Li*, et al. Effects of nitrogen segregation and solubility on the formation of nitrogen gas pores in 21.5Cr-1.5Ni duplex stainless steel, Metallurgical and Materials Transactions B, 2017, 48, 2493-2503. (72)H.B. Li*, S.X. Yang, S.C. Zhang*, et al. Microstructure evolution and mechanical properties of friction stir welding super-austenitic stainless steel S32654, Materials and Design, 2017, 118:207-217. (73)H.B. Li, C.T. Yang, E.Z. Zhou, C.G. Yang*, et al. Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine pseudomonas aeruginosa biofilm, Journal of Materials Science & Technology, 2017, 1-8. (74)S.C. Zhang, Z.H. Jiang, H.B. Li*, et al. Detection of susceptibility to intergranular corrosion of aged super austenitic stainless steel S32654 by a modified electrochemical potentiokinetic reactivation method, Journal of Alloys and Compounds, 2017, 695: 3083~3093. (75)H.C. Zhu, Z.H. Jiang, H.B. Li*, J.H. Zhu, H. Feng, S.C. Zhang, B.B. Zhang, P.B. Wang, and G.H. Liu. Effect of solidification pressure on compactness degree of 19Cr14Mn0.9N high nitrogen steel using CAFE method, Steel Research International, 2017, 88(7):1~12. (76)H.B. Li, E.Z. Zhou, Y.B. Ren et al. Investigation of microbiologically influenced corrosion of highnitrogen nickel-free stainless steel by Pseudomonas aeruginosa, Corrosion Science, 2016, 111: 811–821. (77)H.B. Li*, B.B. Zhang, Z.H. Jiang, et al. A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air, Journal of Alloys and Compounds, 2016, 86: 326-338.

推荐链接
down
wechat
bug