个人简介
孙健,广东工业大学环境科学与工程学院青年百人,教授,广东省特支计划科技创新青年拔尖人才项目获得者,广东省自然科学基金、广东省科技计划项目评审专家,广东省财政厅专家库专家,韶关市创新创业发展专家库专家。主持国家、省部、市局级及中央高校项目共10项,并作为核心成员参与国家“十一五”水污染控制与治理科技重大专项和NSFC-广东联合基金项目;发表SCI论文32篇,其中SCI一区论文18篇,SCI二区论文12篇,SCI三区论文2篇,2篇论文入选ESI高他引论文,授权国家发明专利1项;获广东省优秀博士学位论文奖
工作经历
2010年12月毕业于华南理工大学环境工程专业,获博士学位。2008年11月至2009年12月,获国家留学基金资助,在美国明尼苏达大学双城分校(University of Minnesota, Twincities)做学术访问。2011年3月至2014年10月在华南理工大学轻工技术博士后流动站从事博士后科研工作,获华南理工大学副研究员职称。2014年10月作为“青年百人计划(A类)”特聘副教授进入广东工业大学工作。
学科领域
科学学位:环境科学与工程
专业学位:环境工程
主要著作
“流域水污染控制与治理技术工程示范—以东江流域快速发展支流区为例” (国家“十一五”水体污染控制与治理科技重大专项成果),科学出版社,2016(排名第二)。
知识产权
[1] 第一发明人,一种藻菌微生物燃料电池及其制备方法和应用,授权号:ZL 201310390750. X。
[2] 第一发明人,聚吡咯-碳纳米管-锰-AQDS复合电极材料制备方法,申请号:201510217987.7。
[3] 第一发明人,一种沉积型藻菌生物电化学装置,申请号:201710071065.9。
[4] 第一发明人,一种环带式生物膜电极电化学装置及应用,申请号:201710257355.2。
[5] 第一发明人,一种处理高浓度氨氮有机废水的电化学装置及处理方法,申请号:201710144297.2。
[6] 第一发明人,一种高度集成的回流式的生物电化学废水处理装置和废水处理方法,申请号:201710413953.4。
近五年主持科研项目
[1] 国家自然科学基金青年基金项目(51108186),2012.1-2014,12,25万元。
[2] 广东省特支计划科技创新青年拔尖人才项目(2015TQ01Z039),2016.6—2019.6,30万。
[3] 广东省自然科学基金自由申请项目(2016A030313693),2016.6—2019.6。
[4] 广东省科技计划项目(2014A020216042),2014.12-2017.11,20万元。
[5] 广州市科技计划项目(201607010318),2016.4-2018.3,20万元。
[6] 中国博士后科学基金特别资助项目(2012T50677),2012.9-2013,9,15万元。
[7] 中国博士后科学基金面上项目(20110490880)2011.2-2012.2,3万。
[8] 广东省高等学校科技创新团队项目(2015KTSCX025)2014.2-2017.11。
[9] 中央高校科研业务费重点项目(2014ZZ0018),2014,1-2015,12,20万。
[10] 中央高校科研业务费面上项目(2012ZM0071),2012.1-2013.12,8万。
[11] 广东工业大学青年百人(A类)引进人才项目(1143-220413113),2015.1-2020.1,20万。
近五年参与科研项目
[1] 水体污染控制与治理科技重大专项:东江快速发展支流区水污染系统控制技术集成研究与工程示范 (2009ZX07211-005),2009-2011,906万。
[2] 美国国家科学基金会项目:“GOALI: Development ofa New Generation of Sensors based on metal/bacteria interfaces ”NSF(GrantDBI-0454861), $ 299,987。
[3] NSFC-广东联合基金:东江饮用水源区水污染风险与控制原理(U1401235),2015-2018,235万。
[4] 国家自然科学基金面上项目:微生物染料电池同步降解偶氮染料和产电研究(20977032)2009-2011,34万。
[5] 中国南方电网有限责任公司科技项目:城市污水深度处理作为大型火电厂水源与电厂排(废)水再生回用集成技术研究,2013-2014,广东电网公司电力科学研究院,47.8万。
科研奖励
2013年度广东省优秀博士学位论文:“微生物染料电池同步降解偶氮染料和产电特性与机理”。
教学活动
(1)本科生专业基础课(双语):环境科学概论、环境微生物学
(2)研究生选修课程:创新性实验设计与科技论文写作
指导学生
(1)指导本科生获“第九届全国大学生节能减排社会实践与科技竞赛”校内竞赛二等奖
(2)指导本科生主持“大学生创新创业训练计划项目”国家级、院级各1项。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1]Sun J., Cai B, Xu W., HuangY., et al. Enhanced bioelectricity generation and azo dye treatmentin a reversible photo-bioelectrochemical cell by using novel anthraquinone-2,6-disulfonate(AQDS)/MnOx-doped polypyrrole film electrodes. Bioresource Technology, 2017,(225): 40-47. (IF2016: 5.651).
[2] Sun J., HuY., LiW., et al. Sequential decolorization of azo dye and mineralization ofdecolorization liquid coupled with bioelectricity generation using a pHself-neutralized photobioelectrochemical system operated with polarityreversion. Journal of Hazardous Materials. 2015, 289: 108-117 (SCI一区, IF2015: 4.836,他引6次).
[3] Sun J.,Zhang Y., Liu G., etal. Unveiling characteristics of an bioelectrochemical system with polarityreversion for simultaneous azo dye treatment and bioelectricity generation. AppliedMicrobiology and Biotechnology. 2015, 99 (17): 7295-7305 (SCI二区, IF2015 : 3.376,他引2次).
[4] Sun J., Li W., Li Y., et al. Redox mediator enhancedsimultaneous decolorization of azo dye andbioelectricity generation in air-cathode microbial fuel cell. Bioresource Technology, 2013, (142):407-414. (IF2013: 5.039,他引:37次).
[5]SunJ.,Li Y., HuY., etal. Understanding the degradation of Congo red and bacterial diversity in anair–cathode microbial fuel cell being evaluated for simultaneous azo dyeremoval from wastewater and bioelectricity generation. Applied Microbiologyand Biotechnology, 2013, 97 (8): 3711-3719. (IF2013: 3.811,他引:7次).
[6] Sun J., HuY., Hou B., etal. Electrochemical characteriztion of the bioanode during simultaneous azo dyedecolorization and bioelectricity generation in an air-cathode single chamberedmicrobial fuel cell. Electrochimica Acta, 2011, 56 (1): 6874-6879. (IF2011: 3.832,他引:14次).
[7] Sun J., BiZ., Hou B., etal. Further treatment of decolorization liquid of azo dye coupled withincreased power production using microbial fuel cell equipped with an aerobicbiocathode. Water Research, 2011, 45 (1): 283-291. (IF2011 :4.865,他引:31次).
[8]SunJ.,Hu Y., Bi Z., etal. Improved performance of air-cathode single-chamber microbial fuel cell forwastewater treatment using microfiltration membranes and multiple sludgeinoculation. Journal of Power Sources, 2009, 187 (2): 471-479. (SCI 一区, IF2009: 3.792, 他引: 88次,ESI高他引论文)
[9] Sun J., HuY., Bi Z., etal. Simultaneous decolorization of azo dye and bioelectricity generation usinga microfiltration membrane air-cathode single-chamber microbial fuel cell. BioresourceTechnology, 2009, 100 (3): 3185-3192. (SCI 一区, IF2009: 4.253, 他引: 111 次)
[10]SunJ.,Li Y., HuY., etal. Enlargement of anode for enhanced simultaneous azo dye decolorization andpower output in air-cathode microbial fuel cell. Biotechnology Letters,2012, 34 (11): 2023-2029. (IF2012: 1.736,他引:8次).
[11] Tan P., Sun J.,HuY., etal. Adsorption of Cu2+, Cd2+ and Ni2+ fromaqueous single metal solutions on grapheneoxide membranes.Journal of Hazardous Materials. 2015, 297: 251-260. (IF2013:4.331).
[12] ZhangY., SunJ.,HuY., etal. Effects of periodically alternating temperatures on performance of singlechamber microbial fuel cells. InternationalJournal of Hydrogen Energy, 2014, 39: 8048-8054. (IF2013:2.93).
[13]Li W., Sun J.,HuY., etal. Simultaneous pH self-neutralization and bioelectricity generation in a dualbioelectrode microbial fuel cell under periodic reversion of polarity. Journalof Power Sources, 2014, 268: 287-293. (IF2013: 5.211).
[14]Xu Q., SunJ.,HuY., etal. Characterization and interactions of anodic isolates in microbial fuelcells explored for simultaneous electricity generation and Congo reddecolorization. Bioresource Technology, 2013,142: 101-108. (IF2013:5.039).
[15]Yang S., Sun J.,HuY., etal. Effect of vacuum ultraviolet on ultrasonic defluorination of aqueousperfluorooctanesulfonate. Chemical Engineering Journal, 2013, 234:106-114. (IF2013: 4.058)
[16]Zhang Y., Sun J.,HuY., etal. Carbonnanotube-coated stainless steel mesh for enhanced oxygen reduction inbiocathode microbial fuel cells. Journal of Power Sources, 2013, 239: 169-174. (IF2013:5.211).
[17] Zhang Y., Sun J.,HuY., etal. Bio-cathode materials evaluation in microbial fuel cells: A comparison ofgraphite felt, carbon paper and stainless steel mesh materials. InternationalJournal of Hydrogen Energy, 2012, 37 (22): 16935-16942. (IF2012:3.548).
[18]Hou B., SunJ.,HuY., etal. Simultaneous congo red decolorization and electricity generation in singlechambered microbial fuel cell with different microfiltration, ultrafiltrationand proton exchange membranes. Bioresource Technology, 2011, 102:4433-4438. (IF2011: 4.98).
[19]Zhang Y., Sun J.,HuY., etal. Performance improvement of air-cathode single-chamber microbial fuel cellusing a mesoporous carbon modified anode. Journal of Power Sources,2011, 196 (18): 7458-7464. (IF2011: 4.951).
[20] HouB., SunJ.,HuY., etal. Effect of enrichment procedures on performance and microbial diversity ofmicrobial fuel cell for Congo red decolorization and electricity generation. AppliedMicrobiology and Biotechnology, 2011, 90 (4): 1563-1572. (IF2011:3.425).
[21] Marsili E., SunJ., Bond D.R.Voltammetry and growthphysiology of Geobactersulfurreducens biofilmsas a function of growth stage and imposed electrodepotential. Electroanalysis, 2010, 22 (7-8):865-874. (IF2010: 2.872, 他引60次,ESI高他引论文).
[22] NingX., Shen L., Sun J., et al. Degradation of polycyclic aromatichydrocarbons(PAHs) in textile dyeing sludge by O3/H2O2treatment. RSC Advance, 2015, 5: 38021-38029 (IF2013:3.708).
[23]Hou B., HuY., Sun J.,et al. Performance and microbial diversity of microbial fuel cells coupled withdifferent cathode types during simultaneous azo dye decolorization andelectricity generation. Bioresource Technology, 2012, 102 (6): 105-110.(IF2012: 5.039).
[24]Cao Y., Hu Y., Sun J., et al. Explorevarious co-substrates for simultaneous electricity generation and Congo reddegradation in air-cathode single-chamber microbial fuel cell.Bioelectrochemistry, 2010,79 (1):71-76. (IF2010: 3.52)
[25]Chen J., Deng F., Hu Y., Sun J. et al. Antibacterial activity ofgraphene-modified anode on Shewanella MR biofilm in microbial fuel cell.Journal of Power Sources, 2015,290: 80-86. (IF2015:6.172)
[26]Zhang Y., Hu Y., Li S., Sun J., et al. Manganesedioxide-coated carbon nanotubes as an improved cathodic catalyst for oxygenreduction in a microbial fuel cell. Journal of PowerSources, 2011, 196: 9284-9. (IF2011:4.951)
[27] Li S., Hu Y., Xu Q., Sun J., et al. Iron-andnitrogen-functionalized graphene as a non-precious metal catalyst for enhancedoxygen reduction in an air-cathode microbial fuel cell. Journal of PowerSources, 2014, 213: 265-269. (IF2013:5.211)