当前位置: X-MOL首页全球导师 国内导师 › 温之平

个人简介

教育背景 学士学位(1984年),气象学,杭州大学(现浙江大学) 硕士学位(1990年),天气动力学,中山大学 博士学位(2006年),气象学,中国科学院大气物理研究所 工作经历 2018年8月-至今,特聘教授,复旦大学大气与海洋科学系 2009年9月-2018年7月,主任,中山大学季风与环境研究中心 2000年7月-2015年10月,系主任,中山大学大气科学系 1997年9月-2000年6月,副系主任,中山大学大气科学系 1990年7月-2018年7月,助教、讲师、副教授、教授,中山大学大气科学系 1984年7月-1987年8月,助教,江西农业大学气象教研室 教学经历 1993年2月-2017年6月,热带气象学,本科生,中山大学 2003年2月-2017年6月,热带大气动力学,研究生,中山大学 2019年2月-至今,热带气象学,本科生,复旦大学

研究领域

主要从事气候动力学研究。研究方向包括:热带大气环流、大尺度海-气和陆-气相互作用、亚洲季风、台风气候学、极端天气气候等

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

热带大气环流 Yao Y., Y. Guo, Z. Wen, and S. Huang, 2023: Vertical structure of variabilities in the tropical easterly jet and associated factors, Atmospheric and Oceanic Science Letters, 16, https://doi.org/10.1016/j.aosl.2023.100400. Zhu Y., R. Chen, Q. Song, X. Li, Y. Guo, and Z. Wen*, 2023:An Investigation of the Maintenance Mechanisms of the Quasi-biweekly Pacific-Japan Teleconnection. Climate Dynamics, https://doi.org/10.1007/s00382-023-08908-2. Liu S., X. Fu, Z. Wen, and P. Zhang. 2023:Diverse controlling mechanisms and teleconnections of three distinctive MJO types. Climate Dynamics, 61, 789-812. Ye J., Y. Guo, Z. Wen, P. Zhao, and S. Huang. 2023: Longitudinal oscillation mode of the tropical easterly jet in June: role of precipitation anomalies in Asian monsoon region. Climate Dynamics, 60, 1543–1558. https://doi.org/10.1007/s00382-022-06391-1. Zhan X., Z. Wen, Y. Guo and S. Huang. 2023: Interannual variability of the double easterly jets over the tropical western Pacific and their effect on tropical cyclone genesis. International Journal of Climatology. 43(5), 2050–2061. https://doi.org/10.1002/joc.7961. Li Y., S. Huang, and Z. Wen*, 2022: The influence of the stratospheric quasi-biennial oscillation on the tropical easterly jet over the Maritime Continent. Geophysical Research Letters, 49, e2022GL098940. https://doi.org/10.1029/2022GL098940. Jiang X., Y. Guo, and Z. Wen. 2022: Relationship between cross-equatorial flows over the Bay of Bengal and Australia in boreal summer: Role of tropical diabatic heating. Atmospheric and Oceanic Science Letters, 15, 100100. https://doi.org/10.1016/j.aosl.2021.100100. Li Y., and Z. Wen*. 2022. Influence of tropical convective enhancement in Pacific on the trend of stratospheric sudden warmings in Northern Hemisphere. Climate Dynamics, 58:2541-2555. https://doi.org/10.1007/s00382-021-06021-2. Li Y., and Z. Wen*, 2021: The influence of interdecadal changes in boreal winter teleconnections around the 1980s on planetary waves and stratospheric sudden warmings. Journal of Geophysical Research: Atmospheres, 126, e2021JD035341, https://doi.org/10.1029/2021JD035341. Chen R., Z. Wen, R. Lu, and W. Liu, 2021: Interdecadal changes in the interannual variability of the summer temperature over Northeast Asia, Journal of Climate, 34, 8361-8376. https://doi.org/10.1175/JCLI-D-21-0115.1. Jiang X., Y. Guo, and Z. Wen. 2021: Role of Tropical Diabatic Heating on the Out-of-phase Mode of the Cross-equatorial Flows over the Asian-Australian Monsoon Region in Boreal Summer. Atmospheric and Oceanic Sciences Letters, https://doi.org/10.1016/j.aosl.2021.100100. Huang S., B. Wang, Z. Wen*, and Z. Chen, 2021: Enhanced Tropical Eastern Indian Ocean Rainfall Breaks down the Tropical Easterly Jet-Indian Rainfall Relationship. Journal of Climate, 34. 3039-3048, https://doi.org/10.1175/JCLI-D-20-0631.1. Zhu Y., Z. Wen*, Y. Guo, R. Chen, X. Li, and Y. Qiao, 2020: The Characteristics and Possible Growth Mechanisms of the Quasi-Biweekly Pacific–Japan Teleconnection in Boreal Summer. Climate Dynamics. 55, 3363-3380, https://doi.org/10.1007/s00382-020-05448-3. Huang S., X. Li, and Z. Wen, 2020: Characteristics and Possible Sources of the intraseasonal South Asian Jet Wave Train in Boreal Winter. Journal of climate. 33(24), 10523–10537, https://doi.org/10.1175/JCLI-D-20-0125.1. Guo Y., Z. Wen*, Y. Tan, and X. Li, 2020: Plausible causes of the interdecadal change of the North Pacific teleconnection pattern in boreal spring around the late 1990s. Climate Dynamics, 55(5), 1427-1442, https://doi.org/10.1007/s00382-020-05334-y. Huang S., B. Wang, and Z. Wen, 2020: Dramatic Weakening of the Tropical Easterly Jet Projected by CMIP6 Models. Journal of Climate. 33, 8439-8455, https://doi.org/10.1175/JCLI-D-19-1002.1. Huang S., Z. Wen*, Z. Chen, X. Li, R. Chen and Y. Guo, 2019: Interdecadal change in the relationship between the tropical easterly jet and tropical sea surface temperature anomalies in boreal summer. Climate Dynamics. 53, 2119–2131, https://doi.org/10.1007/s00382-019-04801-5. Wang J., Z. Wen*, R. Wu and A. Lin, 2017: The impact of tropical intraseasonal oscillation on the summer rainfall increase over southern China around 1992/1993. Climate Dynamics, 49: 1847-1863, https://doi.org/10.1007/s00382-016-3425-8. Chen J., Z. Wen*, R. Wu, X. Wang, and C He, 2017: An interdecdal change in the intensity of interannual variability in summer rainfall over southern China around early 1990s. Climate Dynamics, 48, 191-207, doi:10.1007/s00382-016-3069-8. Wang J., Z. Wen*, R. Wu, Y. Guo, and Z. Chen, 2016: The mechanism of growth of the low-frequency East Asia-Pacific teleconnection and the triggering role of tropical intraseasonal oscillation. Climate Dynamics, 46(11), 3965-3977, https://doi.org/10.1007/s00382-015-2815-7. Guo Y., Z. Wen*, R. Wu, R. Lu, and Z. Chen, 2015: Impact of tropical Pacific precipitation on the East Asian upper-tropospheric westerly jet during the boreal winter. Journal of Climate, 28(16), 6457-6474, https://doi.org/10.1175/JCLI-D-14-00674.1. Chen J., Z. Wen*, R. Wu and Z. Chen, 2015: Influences of northward propagating 25-90-day and quasi-biweekly oscillations on Eastern China summer rainfall. Climate Dynamics, 45(1), 105-124, https://doi.org/10.1007/s00382-014-2334-y. Feng X., R. Wu, J. Chen, and Z, Wen*, 2013: Factors for interannual variations of September-October rainfall in Hainan, China. Journal of Climate, 26, 8962-8978. https://doi.org/10.1175/JCLI-D-12-00728.1. 大尺度海-气和陆-气相互作用 Zhang R., B. Dong, Z. Wen*, Y. Guo, and X. Chen, 2023: Multidecadal variability of the air-sea coupling system of the midlatitude Southern Indian Ocean. Journal of Climate, 36, 8761-8781. https://doi.org/10.1175/JCLI-D-23-0198.1. Li J., Z. Wen, X. Li, and Y. Guo, 2022: Interdecadal Changes in the Relationship between Wintertime Surface Air Temperature over the Indo-China Peninsula and ENSO. Journal of Climate,35, 975-995. https://doi.org/10.1175/JCLI-D-21-0477.1. Zhang C., Y. Guo, and Z. Wen*, 2022: Interdecadal Change in the Effect of Tibetan Plateau Snow Cover on Spring Precipitation over Eastern China around the Early 1990s. Climate Dynamics, 58, 2807-2824. https://doi.org/10.1007/s00382-021-06035-w. Chen Z., Z. Li, Y. Du, Z. Wen, R. Wu, and S. Xie, 2021: Trans-Basin Influence of Southwest Tropical Indian Ocean Warming during Early Boreal Summer, Journal of Climate, 34, 9679-9691, https://doi.org/10.1175/JCLI-D-20-0925.1 Zhang C., X. Jia, and Z. Wen, 2021: Increased Impact of the Tibetan Plateau Spring Snow Cover to the Mei-yu Rainfall over the Yangtze River Valley after the 1990s. Journal of Climate, 34, 5985-5997. https://doi.org/10.1175/JCLI-21-0009.1 Zhang R., Y. Guo, Z. Wen, and R. Wu, 2020: Distinct patterns of sea surface temperature anomaly in the South Indian Ocean during austral autumn. Climate Dynamics, 54:2663–2682, https://doi.org/10.1007/s00382-020-05135-3. Guo Y., Z. Wen*, and X. Li, 2020: Interdecadal Change in the Principal Mode of Winter-Spring Precipitation Anomaly over Tropical Pacific around the Late 1990s. Climate Dynamics. 54, 1023-1042, https://doi.org/10.1007/s00382-019-05042-2. Chen Z., Y. Du, Z. Wen, R. Wu, and S. Xie, 2019: Evolution of south tropical Indian Ocean warming and the climatic impacts following strong El Ni?o event. Journal of Climate. 32, 7329-7347, https://doi.org/10.1175/JCLI-D-18-0704.1. Wang Y., R. Wu, and Z. Wen, 2019: Seasonal variations in size and intensity of the Indo-western Pacific warm pool in different sectors. Journal of Oceanography, 75, 423–439, https://doi.org/10.1007/s10872-019-00511-y. Guo Y., Z. Wen*, R. Chen, X. Li and X. Yang, 2019: Effect of boreal spring precipitationanomaly pattern change in the late 1990s over tropical Pacific on the atmospheric teleconnection. Climate Dynamics, 52:1-2, 401-416, https://doi.org/10.1007/s00382-018-4149-8. Li X.,Z. Wen, D. Chen, and Z. Chen, 2019: Decadal transition of the leading mode of interannual moisture circulation over East Asia-Western North Pacific: Bonding to Different Evolution of ENSO. Journal of Climate, 32, 289-308, https://doi.org/10.1175/JCLI-D-18-0356.1. Li Y., W. Tian, F. Xia, Z. Wen, and J. Zhang, 2018: The Connection between the Second Leading Mode of Winter North Pacific Sea Surface Temperature Anomalies and Stratospheric Sudden Warming Events. Climate Dynamics, 51, 581-595, https://doi.org/10.1007/s00382-017-3942. Chen Z., Y. Du, Z. Wen, R. Wu, and C. Wang, 2018: Indo-Pacific climate during the decaying phase of the 2015/16 El Ni?o: Role of southeast tropical Indian Ocean warming. Climate Dynamics. 50 (11-12), 4707-4719,https://doi.org/10.1007/s00382-017-3899-z. Li J., D. Huang, F. Li, and Z. Wen, 2018: Circulation Characteristics of EP and CP ENSO and Their Impacts on Precipitation in South China. Journal of Atmospheric and Solar-Terrestrial Physics, 179, 405–415, https://doi.org/10.1016/j.jastp.2018.09.006. Chen Z., Z Wen*, R. Wu, and Y. Du, 2017: Roles of tropical SST anomalies in modulating the western north Pacific anomalous cyclone during strong La Nina decaying years. Climate Dynamics, 49 :633-647, https://doi.org/10.1007/s00382-016-3364-4. He Z., R. Wu, W. Wang, Z. Wen, and D. Wang, 2017: Contributions of surface heat fluxes and oceanic processes to tropical SST changes: Seasonal and regional dependence. Journal of Climate, 30, 4185-4205, https://doi.org/10.1175/JCLI-D-16-0500.1. Guo Y., M. Ting, Z. Wen, and D. Lee, 2017: Distinct patterns of Tropical Pacific SST Anomaly and Their Impacts on North American Climate. Journal of Climate, 30(14), 5221-5241, https://doi.org/10.1175/JCLI-D-16-0488.1. Peng B.,Z. Chen,Z. Wen*,and R. Lu, 2016:Impacts of two types of El Ni?o on MJO during boreal winter. Advances in Atmospheric Sciences, 33(8): 979-986, https://doi.org/10.1007/s00376-016-5272-2. Guo Y., Z. Wen*, and R. Wu, 2016: Interdecadal Change in the Tropical Precipitation Anomaly around the late 1990s during the Boreal Spring. Journal of Climate, 29, 5979-5997, https://doi.org/10.1175/JCLI-D-15-0462.1. Chen Z., Z. Wen*, R. Wu, X. Lin and J. Wang, 2016: Relative Importance of Tropical SST Anomalies in Maintaining the Western North Pacific Anomalous Anticyclone during El Ni?o to La Ni?a transition years. Climate Dynamics, 46(3), 1027-1041, https://doi.org/10.1007/s00382-015-2630-1. Chen J., Z. Wen*, R. Wu, and Z. Chen, 2014: Interdecadal Changes in the Relationship between Southern China Winter-spring Precipitation and ENSO. Climate Dynamics, 43(5) ,1327-1338, https://doi.org/10.1007/s00382-013-1947-x. Chen Z., Z. Wen*, R. Wu, P. Zhao, and J. Cao, 2014: Influence of two types of El Ni?os on the East Asian climate during boreal summer: A numerical study. Climate Dynamics, 43(1), 469-481, https://doi.org/10.1007/s00382-013-1943-1. Wu R., Z. Wen, and Zhouqi He, 2013: ENSO Contribution to Aerosol Variations over the Maritime Continent and the Western North Pacific during 2000-2010. Journal of Climate, 26, 6541-6560, https://doi.org/10.1175/JCLI-D-12-00253.1. 亚洲季风 Chen W., R. Zhang, R. Wu, Z. Wen, et al. 2023: Recent Advances in Understanding Multi-scale Climate Variability of the Asian Monsoon, Advances in Atmospheric Sciences, 40, 1429-1456. https://doi.org/10.1007/s00376-023-2266-8 Chen G., Y. Du, and Z. Wen, 2021: Seasonal, interannual and interdecadal variations of the East Asian summer monsoon: A diurnal-cycle perspective. Journal of Climate, 34, 4403-4421, https://doi.org/10.1175/JCLI-D-20-0882.1. Zhen Z.,Y. Guo, and Z. Wen*, 2021: Inter-decadal change in the relationship between the Bay of Bengal summer monsoon and South China Sea summer monsoon onset. Front. Earth Sci., https://doi.org/0.3389/feart.2020.610982. Wang Z., Z. Wen*, R. Chen, X. Li, and S. Huang, 2020: Interdecadal enhancement in the interannual variability of the summer monsoon meridional circulation over the South China Sea around the early 1990s. Climate Dynamics, 55, 2149–2164, https://doi.org/10.1007/s00382-020-05375-3. Lin Z., B. Dong, Z. Wen, 2020: The effects of anthropogenic greenhouse gases and aerosols on the inter-decadal change of the South China Sea summer monsoon in the late 20th Century. Climate Dynamics. 54, 3339–3354, https://doi.org/10.1007/s00382-020-05175-9. Chen, W., L. Wang, J. Feng, Z. P. Wen, T. J, Ma, X. Q. Yang, and C. H. Wang, 2019: Recent progress in studies of the variabilities and mechanisms of the East Asian monsoon in a changing climate. Adv. Atmos. Sci., 36(9), 887–901, https://doi.org/10.1007/s00376-019-8230-y. Zhang H., Z. Wen*, R. Wu, R. Chen, and X. Li, 2019: An inter-decadal increase in summer sea level pressure over the Mongolian region around the early 1990s. Climate Dynamics, 52:3-4, 1935-1948, https://doi.org/10.1007/s00382-018-4228-x. Zhu X., Y. Guo, H. Zhang, X. Li, R. Chen and Z. Wen*, 2018: A southward withdrawal of the north edge of the East Asian summer monsoon around the early 1990s. Atmospheric and Oceanic Sciences. 11(2), 136-142, https://doi.org/10.1080/16742834.2018.1410058. Zhang H., Z. Wen*, and R. Wu, 2017: Inter-decadal changes in the East Asian summer monsoon and associations with sea surface temperature anomaly in the South Indian Ocean. Climate Dynamics, 48,1125-1139, https://doi.org/10.1007/s00382-016-3131-6. LIANG Jie-Yi, WEN Zhi-Ping*, CHEN Jie-Peng and WU Li-Ji. 2013: Characteristics of Tropical Sea Surface Temperature Anomalies and Their Influences on the Onset of South China Sea Summer Monsoon. Atmospheric and Oceanic Sciences Letter. 6(5),266-272. 台风气候学 Gu Y., L. Wu, R. Zhan, and Z. Wen, 2022: Characteristics of developing and nondeveloping disturbances for tropical cyclone genesis over the western North Pacific. Terrestrial, Atmospheric and Oceanic Sciences, 33:13. https://doi.org/10.1007/s44195-022-00012-4 Wu L., Z. Wen*, and R. Huang. 2020: Tropical cyclones in a warming climate. Science China Earth Science, 63(3): 456-458, doi:10.1007/s11430-019-9574-4. Chen, S., W. Li, Z. Wen, Y. Lu, M. Zhou, Y. Qian, and G. Chen, 2019: Vertical motions prior to the intensification of simulated Typhoon Hagupit (2008). Journal of Geophysical Research: Oceans, 124, 577–592, https://doi.org/10.1029/ 2018JC014086. Chen S., W. Li, Z. Wen, and Y. Qian, 2018: Variations in High-frequency Oscillations of Tropical Cyclones over the Western North Pacific. Advance in Atmospheric Sciences. 35 (4),423-434, https://doi.org/10.1007/s00376-017-7060-z. Lin X., Z. Wen, W. Zhou, R. Wu, and R. Chen, 2017: Effect of Tropical Cyclone Activity on Boundary Moisture Budget of the East Asian Monsoon Region. Advances in Atmospheric Sciences, 34, 700-712, https://doi.org/:10.1007/s00376-017- 6191-6. Chen J., Z. Wen*, and X. Wang, 2017: Relationship over southern China between the summer rainfall induced by tropical cyclones and that by monsoon. Atmos. Oceanic Sci. Lett., 10(1), 96-103, https://doi.org/10.1080/16742834.2017.1248756. Wu L., Z. Wen, and R. Wu, 2015: Influence the monsoon trough on westward-propagating synoptic-scale disturbances over the western North Pacific. Part I: Observations. Journal of Climate, 28(18), 7108-7127, https://doi.org/10.1175/JCLI-D-14-00806.1. Wu L., Z. Wen, and R. Wu, 2015: Influence the monsoon trough on westward-propagating synoptic-scale disturbances over the western North Pacific. Part II: Energetics and numerical experiments. Journal of Climate, 28, 9332-9349, https://doi.org/10.1175/JCLI-D-14-00807.1. Chen S., Y. Lu, W. Li, and Z. Wen, 2015: Identification and Analysis of High-Frequency Oscillations in the Eyewalls of Tropical Cyclones. Advances in Atmospheric Sciences,32, 624–634,https://doi.org/10.1007/s00376-014-4070-y. Chen S., W. Li, Y. Lu, and Z. Wen, 2014: Variations of latent heat flux during tropical cyclones over the South China Sea. Meteorol. Appl., 21: 717–723,doi:10.1002/met.1398. Wu L., Z. Wen*, T. Li, and R. Huang, 2014: ENSO-phase dependent TD and MRG wave activity in the western North Pacific. Climatic Dynamics, 42(5), 1217–1227, https://doi.org/10.1007/s00382-013-1754-4. Chen J., R. Wu, and Z. Wen, 2012: Contribution of South China Sea tropical cyclones to southern China summer rainfall increase around 1993. Advance in Atmospheric Sciences, 29(3), 585-598, https://doi.org/10.1007/s00376-011-1181-6. Wu L., Z. Wen*, R. Huang, and R Wu, 2012: Possible linkage between the monsoon trough variability and the tropical cyclone activity over the western North Pacific. Monthly Weather Review, 140(1), 140-150, https://doi.org/10.1175/MWR-D-11-00078. 极端天气气候 Huang S., Z. Wen*, X. Chen, Y. Guo, and Z. Wang, 2023: Origins of the intraseasonal variability of the extreme rainfall in Henan Province of China in July 2021. Climate Dynamics, https://doi.org/10.1007/s00382-023-07052-7. Zhou Y., J. Yuan, Z. Wen, Y. Guo, X. Chen, and S. Huang, 2023: The impacts of the East Asian subtropical westerly jet on weather extremes over China in early and late summer. Atmospheric and Oceanic Science Letters, https://doi.org/10.1016/j.aosl.2022.100212 Huang S., Z. Wen, X. Chen, Y. Guo, and Z. Wang. 2022: The Henan extreme rainfall in July 2021: Modulation of the northward-shift monsoon trough on the synoptic-scale disturbance. Advances in Climate Change Research, 13, 819-825. Chen X., Z. Wen*, Y. Song, and Y. Guo, 2022: Causes of extreme 2020 Meiyu-Baiu rainfall: a study of combined effect of Indian Ocean and Arctic. Climate Dynamics. 59, 3485–3501. https://doi.org/10.1007/s00382-022-06279-0. Zeng, W., G. Chen, L. Bai, Q. Liu, and Z. Wen, 2022: Multiscale Processes of Heavy Rainfall over East Asia in Summer 2020: Diurnal Cycle in Response to Synoptic Disturbances. Mon. Wea. Rev., 150 (6), 1355–1376. https://doi.org/10.1175/MWR-D-21-0308.1 Chen R., Z. Wen, R. Lu, and W. Liu, 2021: Interdecadal changes in the interannual variability of the summer temperature over Northeast Asia. Journal of Climate, 34, 8361-8376. https://doi.org/10.1175/JCLI-D-21-0115.1. Chen G., Y. Du, and Z. Wen, 2021: Seasonal, interannual and interdecadal variations of the East Asian summer monsoon: A diurnal-cycle perspective. Journal of Climate, 34, 4403-4421. https://doi.org/10.1175/JCLI-D-20-0882.1. Guo Y., R. Zhang, Z. Wen*, J. Li, C. Zhang, and Z. Zhou, 2021: Understanding the role of SST anomaly in extreme rainfall of 2020 Meiyu Season from an interdecadal perspective. Science China Earth Sciences, 10(64), 1619-1632, https://doi.org/10.1007/s11430-020-9762-0. Chen X., A. Dai, Z. Wen, and Y. Song, 2021: Contributions of Arctic sea-ice loss and East Siberian atmospheric blocking to 2020 record-breaking Meiyu-Baiu rainfall. Geophysical Research Letters, 48, e2021GL092748, https://doi.org/10.1029/2021GL092748. Liu W., R. Chen,and Z. Wen, 2021: An interdecadal decrease of extreme heat days in August over Northeast China around the early 1990s. Atmospheric and Oceanic Science Letters, 14 (2021) 100001, https://doi.org/10.1016/j.aosl.2020.100001. Lin W., R. Chen, Z. Wen, and W. Chen, 2021: Large-scale circulation features associated with different types of extreme high temperatures over South China. International Journal of Climatology, 42(2), 974–992. https://doi.org/10.1002/joc.7283. Li X., Z. Wen, W. Huang, 2020: Modulation of South Asian Jet wave train on the Extreme Winter Precipitation over Southeast China: Comparison between 2015/16 and 2018/19. Journal of Climate, 33, 4065-4081, https://doi.org/10.1175/JCLI-D-19-0678.1. Wu N., X. Ding, Z. Wen*, Z. Meng, G. Chen, and J. Min, 2020: Contrasting the frontal and warm-sector heavy rainfalls over South China during the early-summer rainy season, Atmospheric Research, 235, 104693, https://doi.org/10.1016/j.atmosres. Zeng, W., G. Chen, Y. Du, and Z. Wen, 2019: Diurnal variations of low-level winds and rainfall response to large-scale circulations during a heavy rainfall event. Monthly Weather Review, 147:3981-4004. https://doi.org/10.1175/MWR-D-19-0131.1. Chen R., Z. Wen, and R. Lu, 2019: Influences of tropical circulation and sea surface temperature anomalies on extreme heat over Northeast Asia in the midsummer of 2018. Atmospheric and Oceanic Science Letters, 12(4), 238-245, https://doi.org/0.1080/16742834.2019.1611170 Chen R., Z. Wen, R. Lu and C. Wang, 2019: Causes of the Extreme Hot Midsummer in Central and South China during 2017: Role of the western tropical Pacific warming. Advance in Atmospheric Sciences. 36(5), 465-478, https://doi.org/10.1007/s00376-018-8177-4. Chen R., Z. Wen, and R. Lu, 2018: Large-scale circulation anomalies and intra-seasonal oscillations associated with the long-lived extreme heat events in South China. Journal of Climate. 31, 213-231. https://doi.org/10.1175/JCLI-D-17-0232.1. Chen, R., Z. Wen, and R. Lu, 2018: Interdecadal change on the relationship between the mid-summer temperature in South China and atmospheric circulation and sea surface temperature. Climate Dynamics, 51, 2113-2126, https://doi.org/10.1007/s00382-017-4002-5. Chen, G., W. Sha, T. Iwasaki, and Z. Wen, 2017: Diurnal cycle of a heavy rainfall corridor over East Asia. Monthly Weather Review, 145 (8), 3365–3389, https://doi.org/10.1175/MWR-D-16-0423.1. Chen R., Z. Wen, R. Lu, 2016: Evolutions of the circulation anomalies and the quasi-biweekly oscillations associated with extreme heat events in South China. Journal of Climate, 29, 6909-6921, https://doi.org/10.1175/JCLI-D-16-0160.1. WU Li-Ji, WEN Zhi-Ping*, HE Hai-Yan, 2015: Relationship between the Periodic Fluctuations of Pressure and Precipitation during a Rainstorm. Atmos. Oceanic Sci. Lett., 8(2), 78-81, https://doi.org/10.3878/AOSL20140082. 其它方向 Guo Y., X. Chen, S. Huang, and Z. Wen, 2023: Amplified interannual variation of the Summer Sea Ice in the Weddell Sea, Antarctic after the late 1990s. Geophysical Research Letters,50, e2023GL104924. https://doi.org/10.1029/2023GL104924 Zhao Y., Z. Wen and X. Li, 2023: Interannual meridional variation of the Mascarene High and its coupling with transient eddies over the southern Indian Ocean in austral winter. Journal of Climate, 36, 6937-6950. https://doi.org/10.1175/JCLI-D-22-0838.1 Li J., X. Chen, Y. Guo, and Z. Wen*, 2023: Contrasting Deep and Shallow Winter Warming over the Barents-Kara Seas on the Intraseasonal Time Scale. Journal of Climate, 36(19), 6897–6916.https://doi.org/10.1175/JCLI-D-22-0879.1 Chen Z., Y. Du, R. Wu, and Z. Wen, 2023: Atmospheric rivers over East Asia during early boreal summer: Role of Indo-western Pacific Ocean capacitor, Climate Dynamics. https://doi.org/10.1007/s00382-023-07036-7 Zhou Y., J. Yuan, Z. Wen, X. Chen, Y. Guo, and X. Yang, 2023: The influence of the wave trains on the intraseasonal variability of the East Asian subtropical westerly jet in early and late summer, Climate Dynamics, 60, 2081–2095. https://doi.org/10.1007/s00382-022-06412-z. Guo Y., Z. Wen, Y. Zhu, and X. Chen, 2022: Effect of Tropical Precipitation Anomaly Pattern Change in the Late 1990s on Teleconnection to the Amundsen-Bellingshausen Seas Region during Austral Autumn. Journal of Climate, 35, 5687-5702. https://doi.org/10.1175/JCLI-D-21-0965.1 Zhao Y., Z. Wen, X. Li, R. Chen, and G. Chen. 2022: Structure and Maintenance Mechanisms of the Mascarene High in Austral Winter. International Journal of Climatology, 42(9), 4700–4715. https://doi.org/10.1002/joc.7498. Huang J., W. Chen, Z. Wen, G. Zhang, Z. Li, Z. Zuo, and Q. Zhao, 2019: Review of Chinese atmospheric science research over the past 70 years: Climate and climate change. Sci China Earth Sci. 62,1514–1550, https://doi.org/10.1007/s11430-019-9483-5. Zheng Z., Z. Wei, Z. Wen, W. Dong, Z. Li, X. Wen, X. Zhu, C. Chen, and S. Hu, 2018: A study of variation characteristics of Gobi broadband emissivity based on field observational experiments in northwestern China. Theoretical and applied climatology, 131(3-4), 1357-1368, https://doi.org/10.1007/s00704-017-2056-2. Jiang P., Z. Wen and W. Sha, G. Chen, 2017: Interaction between Organized Turbulent Flow and Sea-Breeze Front over Urban-like Coast in Large-Eddy Simulation. Journal of Geophysical Research: Atmosphere, 122, 5298–5315, https://doi.org/10.1002/2016JD026247. Ding Z., Y. Ma, Z.Wen, W. Ma, and S. Chen, 2017: A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation. Theoretical and Applied Climatology, 129: 59-76, https://doi.org/10.1007/s00704-016-1754-5. Zhu, X., G. Chen, W. Sha, T. Iwasaki, W. Li, and Z. Wen, 2014: The role of rapid urbanization in surface warming over eastern China. International Journal of Remote Sensing, 35 (24), 8295-8308, https://doi.org/10.1080/01431161.2014.985397. Wu R., J. Chen, and Z. Wen, 2013: Precipitation-Surface Temperature Relationship in the IPCC CMIP5 Models. Advances in Atmospheric Sciences, 30(3), 2013, 766-778, https://doi.org/10.1007/s00376-012-2130-8. Ding Z., Z Wen*, R. Wu, Z. Li, J. Zhu, W. Li, and M. Jian, 2013: Surface energy balance measurements of a banana plantation in South China. Theor. Appl. Climatol, 114, 349–363, https://doi.org/10.1007/s00704-013-0849-5.

学术兼职

曾兼任国际气象学和大气科学协会中国委员会(CNC-IAMAS)委员、全球能量与水分循环计划中国委员会(CNC-GEWEX)委员;现兼任世界气候研究计划中国国家委员会(CNC-WCRP)委员、中国气象学会理事、中国气象学会热带气象委员会副主任委员、中国气象学会气候学委员会委员、中国气象学会动力气象学委员会委员、中国气象学统计气象学与气候预测委员会委员、中国气象学会气象教育与培训委员会委员、上海市气象学会副理事长;《中国科学•地球科学》(中英文版)、《Advances in Atmospheric Sciences》、《Atmosphere》、《大气科学》、《大气科学学报》、《高原气象》等杂志编委

推荐链接
down
wechat
bug