当前位置: X-MOL首页全球导师 国内导师 › 仝殿民

个人简介

学习经历 1978.10-1982.07 山东大学物理系,获学士学位; 1987.09-1990.07 吉林大学物理系理论物理专业,获硕士学位; 1991.09-1994.07 吉林大学物理系理论物理专业,获博士学位。 工作经历 工作经历 1982.08-1985.12 中国科学院光电技术研究所,研究实习员; 1986.01-1987.08, 1990.09-1991.08 烟台大学物理系,助教; 1994.09-2007.09 山东师范大学物理系,教授、博士生导师; 2007.09-今 山东大学物理学院,教授、博士生导师。 1994年晋升为教授,2009年晋升教授二级岗, 2013年起为泰山学者特聘教授。 工作介绍 本人及所在的山东大学物理学院量子信息组主要从事量子信息的物理基础研究,过去几年,我们在量子物理基础理论、量子信息、数学物理等多个研究领域完成了一些具有国际影响的工作。代表性成果: 1)提出了开放系统的几何相理论(PRL93,080405,2004),为几何相在开放系统的应用奠定了基础,所给公式已成为计算混态几何相的基本依据被广泛应用于各类物理体系。该理论所确定的几何相位被加拿大Laflamme组的实验证实(PRL105,240406,2010); 2)证明了通常哈密顿量H(t)的本征值、本征函数描述的量化绝热条件的非充分性(PRL95,110407,2005),并在后续的工作中进一步确立了其性质和应用范围(PRL98,150402,2007;PRL104,120401,2010)。 该绝热条件非充分性的理论结果被中科大杜江峰组的实验证实(PRL101,060403,2008); 3)提出了非绝热Holonomy量子计算理论,并应用于开放系统普适量子门的设计(NJP14,103035,2012;PRL109,170501,2012;PRA89,042302,2014)。该理论旨在克服量子系统的控制误差和退相干问题——这是实现量子计算所面临的主要挑战。该理论已被清华大学龙桂鲁组(PRL110,190501,2013)、苏黎世理工与加州理工的联合组独立的两个实验证实(Nature496,482,2013); 4)发现了Kochen-Specker(KS)不等式和一般Noncontextuality (NC)不等式的共存性。KS和NC不等式被用于论证量子体系是否存在隐变量、以澄清量子力学的完备性。这一发现及其严谨的证明已被审稿人被推荐为Rapid Communications.在PRA发表(PRA89,010101(R),2014)。 5) 提出了关于准对角密度矩阵相干性度量的可加性公理假定,并证明了基于相对熵测量的相干性完全冻结定理。关于该工作的两篇论文都被推荐为Rapid Communications发表在PRA(PRA93,060303(R),2016;PRA94,060302(R),2016). 除上述代表性成果外,我们还完成了一些其他有影响的工作,如,辫子群的不可约表示理论已被写入多本专著和研究生教材,并获山东省科技进步一等奖;高维密集编码量子通信方案作为高密编码领域的首个方案,SCI他引260多次。近几年,6篇论文发表在PRL上,研究成果SCI他引1300余次,引用杂志包括Nature、Science、PRL和著名评论刊物Rev. Mod. Phys.、Phys. Rep.等。研究成果先后获得山东省科技进步一等奖、教育部自然科学一等奖、国家自然科学二等奖。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. C. L. Liu, Yan-Qing Guo, D. M. Tong Enhancing coherence of a state by stochastic strictly incoherent operations Phys. Rev. A 96, 062325 (2017) 2. P. Z. Zhao, Xiao-Dan Cui, G. F. Xu, Erik Sjöqvist, D. M. Tong Rydberg-atom-based scheme of nonadiabatic geometric quantum computation Phys. Rev. A 96, 052316 (2017) 3. P. Z. Zhao, G. F. Xu, Q. M. Ding, Erik Sjöqvist, D. M. Tong Single-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspaces Phys. Rev. A 95, 062310 (2017) 4. G. F. Xu, P. Z. Zhao, D. M. Tong, Erik Sjöqvist Robust paths to realize nonadiabatic holonomic gates Phys. Rev. A 95, 052349 (2017) 5. G. F. Xu, P. Z. Zhao, T. H. Xing, Erik Sj¨oqvist, D. M. Tong, Composite nonadiabatic holonomic quantum computation Phys. Rev. A 95, 032311 (2017) 6. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. Tong Universal freezing of asymmetry Phys. Rev. A 95, 022323 (2017) 7. Xiao-Dong Yu, Da-Jian Zhang, G. F. Xu, D. M. Tong Alternative framework for quantifying coherence Phys. Rev. A 94 (2016) 060302 (Rapid Communications). 8. Pei-Zi Zhao, G F Xu, D M Tong Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases Phys. Rev. A 94 (2016) 062327. 9. Da-Jian Zhang, Xiao-Dong Yu, Hua-Lin Huang, D. M. Tong General approach to find steady-state manifolds in Markovian and non-Markovian systems Phys. Rev. A 94 (2016) 052132. 10. Xiao-Dong Yu, Da-Jian Zhang, C. L. Liu, D. M. Tong Measure-independent freezing of quantum coherence Phys. Rev. A 93 (2016) 060303 (Rapid Communications). 11. Da-Jian Zhang, Hua-Lin Huang, D. M. Tong1 Non-Markovian quantum dissipative processes with the same positive features as Markovian dissipative processes Phys. Rev. A 93 (2016) 012117. 12. G. F. Xu, C. L. Liu, P. Z. Zhao, D. M. Tong Nonadiabatic holonomic gates realized by a single-shot implementation Phys. Rev. A 92 (2015) 052302. 13. J. Zhang, Thi Ha Kyaw, D. M. Tong, Erik Sjöqvist, L. C. Kwek Fast non-Abelian geometric gates via transitionless quantum driving Sci. Rep. 5, 18414 (2015). 14. Xiao-Dong Yu, Yan-Qing Guo, D M Tong A proof of the Kochen–Specker theorem can always be converted to a state-independent noncontextuality inequality New J. Phys. 17 (2015) 093001. 15. Da-Jian Zhang, Xiao-Dong Yu, D M Tong Theorem on the existence of a non-zero energy gap in adiabatic quantum computation Phys. Rev. A 90(2014)042321. 16. Long-Jiang Liu, D M Tong Completely positive maps within the framework of direct-sum decomposition of state space Phys. Rev. A 90(2014)012305. 17. X D Yu, D M Tong Coexistence of Kochen-Specker inequalities and noncontextuality inequalities Phys. Rev. A 89(2014)010101 (Rapid Communications). 18. J. Zhang, L C Kwek, E Sjoqvist, D M Tong, P Zanardi Quantum computation in noiseless subsystems with fast non-Abelian holonomies Phys. Rev. A 89(2014)042302. 19. G F Xu, J Zhang, D M Tong, E Sjoqvist, L C Kwek, Nonadiabatic holonomic quantum computation in decoherence-free subspaces Phys. Rev. Lett, 109(2012)170501. 20. E Sjoqvist,D M Tong, L M Andersson, B Hessmo, M Johansson, K Singh Non-adiabatic holonomic quantum computation New J phys., 14(2012)103035 21. M Johansson, E Sjoqvist, L M Andersson, M Ericsson, B Hessmo, K Singh, D M Tong Robustness of nonadiabatic holonomic gates Phys. Rev. A 86(2012)062322 22. D M Tong, Reply to comments on quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximation Phys. Rev. Lett 106 (2011)138903. 23. X J Fan, Z B Liu, Y Liang, K N Jia, D M Tong, Phase control of probe response in a Doppler-broadened N-type four-level system Phys. Rev. A 83(2011)043805. 24. D M Tong Quantitative conditions is necessary in guaranteeing the validity of the adiabatic approximation Phys. Rev. Lett., 104(2010) 12:120401 25. C W Niu, G F Xu, L J Liu, L Kang, D M Tong, L C Kwek, Separable states and geometric phases of an interacting two-spin system Phys. Rev. A, 81(2010)1:012116 26. S Yin, D M Tong Geometric phase of a quantum dot system in nonunitary evolution Phys. Rev. A 79 (2009)4: 044303 27. C S Guo, L L Lu , G X Wei, J L He, D M Tong Diffractive imaging based on a multipinhole plate Optics Letters 34(2009)12:1813 28. D M Tong, K. Singh, L C Kwek, C H Oh Sufficiency Criterion for the Validity of the Adiabatic Approximation Phys. Rev. Lett., 98(2007)15:150402 29. X X Yi, D M Tong, L C Wang, L C Kwek, and C. H. Oh Geometric phase in open systems: Beyond the Markov approximation and weak-coupling limit Phys. Rev. A, 73(2006)052103. 30. D M Tong, K. Singh, L C Kwek, C H Oh Quantitative conditions do not guarantee the validity of the adiabatic approximation Phys. Rev. Lett., 95(2005)11:110407 31. D M Tong, E. Sjoqvist, S. Filipp, L C Kwek, C H Oh Kinematic approach to off-diagonal geometric phases of nondegenerate and degenerate mixed Phys. Rev. A 71(2005)032106 32. D M Tong, E. Sjoqvist, L C Kwek, C H Oh Kinematic approach to geometric phase of mixed states under nonunitary evolutions Phys. Rev. Lett., 93(2004)8:080405 33. D M Tong, L C Kwek, C H Oh, J L Chen, and L Ma Operator-sum representation of time-dependent density operators Phys. Rev. A, 69(2004)054102 34. D M Tong, J L Chen, L C Kwek, C. H. Lai, and C H Oh General formalism of Hamiltonians for realizing a prescribed evolution of a qubit Phys. Rev. A, 68(2003)062307 35. D M Tong, E. Sjoqvist, L C Kwek, C H Oh and M Ericsson Relation between the geometric phases of the entangled biparticle system and their subsystems Phys. Rev. A, 68(2003)022106 36. K Sigh, D M Tong, K Basu, J L Chen and J F Du Geometric phase for non-degenerate and degenerate mixed states Phys. Rev. A, 67(2003)3:032106 37. S X Liu, G L Long, D M Tong and Feng Li General scheme for superdense coding between multiparties Phys. Rev. A, 65(2002)02

推荐链接
down
wechat
bug