当前位置: X-MOL首页全球导师 国内导师 › 刘健

个人简介

刘健,男,2005年7月获得北京大学物理学学士,2012年6月获得北京大学等离子体物理学博士,2010年4月至2012年4月期间在美国普林斯顿大学等离子体物理实验室联合培养博士。主要从事等离子物理基础理论、几何算法、大规模数值模拟、科学大数据挖掘与机器学习研究,在几何相位、保结构数值算法、射频波物理、逃逸电子物理、先进模拟程序开发与实验数据挖掘等方向完成了一系列原创性工作。多次在国际会议上做邀请报告,在国际主流期刊上发表SCI论文60余篇,获得发明专利2项,译著一部。发起 GeoAlgorithm Plasma Simulator(GAPS)先进软件开发项目,发起建立磁约束聚变能源计算中心。主持科技部国家磁约束核聚变能重点研发专项、国家自然基金、中国科学院前沿科学重点研究项目等项目和课题十余项。2015年获得“中国科学院超级计算最佳应用奖”。2016年获得中国科学院“拔尖青年科学家”称号。2016年6月在“神威-太湖之光”超级计算机上实现了千万核级的最大规模长期粒子模拟,计算步数达几万亿步,总计算误差低于百万分之一。承担过《磁化等离子体回旋动理论导论》、《科学与社会》、《数学物理方程》等课程的讲授。

研究领域

等离子体物理与磁约束核聚变,数值算法、大规模数值模拟、数值分析与机器学习

专利 1. 《等离子体粒子-场自洽系统长期大规模高保真模拟方法》,刘健,201610023464.3, 2016年01月12日 2. 《基于时域全局相似度的多通道测量数据自动筛选方法》,刘健,兰婷,201611241768.3,2016年12月29日 承担项目 1. 2018年01月-2021年12月,“带轨道角动量的射频波在磁约束聚变能研究中的应用”,11775222, 面上项目,国家自然科学基金委员会,项目负责人 2. 2016年08月-2020年12月,“磁约束聚变能研究中的先进几何方法及应用”,QYZDB-SSW-SYS004, 中国科学院前沿科学重点研究项目——拔尖青年科学家项目,中国科学院前沿科学与教育局,项目负责人 3. 2016年01月-2019年12月,“磁约束聚变装置中逃逸电子长期动力学模拟研究”,11575185, 面上项目,国家自然科学基金委员会,项目负责人 4. 2015年01月-2019年12月,“磁约束聚变关键科学技术问题的研究”,中国科学院,中科院重点部署课题,子课题负责人 5. 2015年01月-2019年12月,“磁约束聚变装置中逃逸电子关键物理问题研究”, 2015GB111003, 科技部基础研究司,国家磁约束核聚变能发展研究专项,课题负责人 6. 2014年01月-2018年12月,“磁约束聚变等离子体模拟的几何方法及理论”,2014GB124005, 科技部基础研究司,国家磁约束核聚变能发展研究专项,负责等离子体模拟的几何方法。 7. 2013年07月-2018年06月,“高性能等离子体稳态维持中的关键物理问题研究”,NSFC-11261140328, 国家自然科学基金委,A3项目,参与逃逸电子研究 8. 2013年07月-2014年06月,“撕裂模中带电粒子运动的辛算法模拟”,横向,四川大学,项目负责人 9. 2014年01月-2016年12月,“磁化等离子体物理中的几何相位现象研究”,11305171, 青年科学基金项目,国家自然科学基金委员会,项目负责人 10.2013年01月-2014年12月,“基于回旋规范动理学的非线性集成射频波模拟研究”,2013M530296, 中国博士后基金会,博士后面上项目,项目负责人 11.2013年01月-2017年12月,“托卡马克大规模数值模拟”,2013GB111000, 科技部基础研究司,国家磁约束核聚变能发展研究专项,参加射频波模拟子课题。 12.2013年01月-2014年12月,“基于回旋规范动理学理论的射频波数值模拟研究”,WK2030020022, 教育部,中央高校基本科研业务专项资金资助,项目负责人

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1.Symplectic integrators with adaptive time step applied to runaway electron dynamics, Y. Shi, Y. Sun, Y. He, H. Qin, J. Liu, Numerial Algorithms 81(2019), 2. Energy-preserving algorithm for gyrocenter dynamics of charged particles, R. Zhang, J. Liu*, H. Qin, Y. Tang, Numerial Algorithms 81(2019), 1521-1530 3. Solving the Vlasov–Maxwell equations using Hamiltonian splitting, Y. Li, Y. He, Y. Sun, J. Niesen, H. Qin, J. Liu, Journal of Computational Physics 396(2019), 381-399 4. A lattice Maxwell system with discrete space-time symmetry and local energy- momentum conservation, J. Xiao, H. Qin, Y. Shi, J. Liu, R. Zhang, Phys. Lett. A 383(2019), 808-812 5. Time-domain global similarity method for automatic data cleaning for multi-channel measurement systems in magnetic confinement fusion devices, T. Lan, J. Liu*, H. Qin, L. Xu, Compt. Phys. Commun. 234 (2019), 159-166 6. An Automatic Data Cleaning Procedure for Electron Cyclotron Emission Imaging on EAST Tokamak Using Machine Learning Algorithm, C. Li, T. Lan, Y. Wang, J. Liu, J. Xie, T. Lan, H. Li and H. Qin, Journal of Instrumentation 13(2018), P10029 7. Conservative magnetic moment of runaway electrons and collisionless pitch-angle scattering, C. Liu, H. Qin, E. Hirvijoki, Y. Wang, J. Liu, Nucl. Fusion 58 (2018), 106018 8. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field, R. Zhang, Y. Wang, Y. He, J. Xiao, J. Liu, H. Qin and Y. Tang, Phys. Plasmas 25 (2018), 022117 9. A theory of self-organized zonal flow with fine radial structure in tokamak, Y. Zhang, Z. Liu, T. Xie, S. Mahajan and J. Liu, Phys. Plasmas 24 (2017), 122304 10.The Accurate Particle Tracer Code, Y. Wang, J. Liu*, H. Qin, Z. Yu, and Y. Yao, Compt. Phys. Commun., 220 (2017), 212–229 11.Preference-based performance measures for Time-Domain Global Similarity method, T. Lan, J. Liu*, H. Qin, Journal of Instrumentation 12 (2017), C12008 12.Improvement of training set structure in fusion data cleaning using Time-Domain Global Similarity method, J. Liu, T. Lan, H. Qin, Journal of Instrumentation 12 (2017), C10004 13.Local Energy Conservation Law for a Spatially-Discretized Hamiltonian Vlasov-Maxwell System, J. Xiao, H. Qin, J. Liu, R. Zhang, Phys. Plasmas 24 (2017), 062112 14.Canonical symplectic structure and structure-preserving geometric algorithms for Schordinger-Maxwell systems, Q. Chen, H. Qin, J. Liu, J. Xiao, R. Zhang, Y. He, Y. Wang, J Compt. Phys. 349 (2017), 411-452 15.Design for detection of tokamak plasma positron via annihilation photons, G. Yu, J. Liu, J. Xie, and J. Li, Fusion Engineering and Design 118 (2017), 124-128 16.Explicit symplectic methods for solving charged particle trajectories, Z. Zhou,Y. He, Y. Sun, J. Liu, H. Qin, Phys. Plasmas 24 (2017), 052507 17.Photons, phonons, and plasmons with orbital angular momentum in plasmas, Q. Chen, H. Qin, and J. Liu, Scientific Reports 7(2017), 41731 18.Explicit K-symplectic algorithms for charged particle dynamics, Y. He, Z. Zhou, Y. Sun, J. Liu, and H. Qin, Phys. Lett. A 381(2017), 568-573 19.Lorentz Covariant Canonical Symplectic Algorithms for Dynamics of Charged Particle, Y. Wang, J. Liu*, and H. Qin, Phys. Plasmas 23 (2016), 122513 20.A family of new explicit, revertible, volume-preserving numerical schemes for the system of Lorentz force, X. Tu, B. Zhu, Y. Tang, H. Qin, J. Liu*, and R. Zhang, Phys. Plasmas 23 (2016), 122514 21.Explicit high-order noncanonical symplectic algorithms for ideal two-fluid systems, J. Xiao, H. Qin, P. J. Morrison, J. Liu, Z. Yu, R. Zhang, Y. He, Phys. Plasmas 23 (2016), 112107 22.High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields, Y. He, Y. Sun, R. Zhang, Y. Wang, J. Liu, and H. Qin, Phys. Plasmas 23 (2016), 092109 23.Hamiltonian particle-in-cell methods for Vlasov-Maxwell equations, Y. He, Y. Sun, H. Qin and J. Liu, Phys. Plasmas 23 (2016), 092108 24.Design of geometric phase measurement in EAST Tokamak, T. Lan, H. Liu, J. Liu, Y. Jie, Y. Wang, X. Gao, and H. Qin, Phys. Plasmas 23 (2016), 072109 25.Explicit symplectic algorithms based on generating functions for charged particle dynamics, R. Zhang, H. Qin, Y. Tang, J. Liu, Y. He, and J. Xiao, Phys. Rev. E 94 (2016), 013205 26.On the structure of the two-stream instability -- complex G-Hamiltonian structure and Krein collisions between positive- and negative-action modes, R. Zhang, H. Qin, R. Davidson, J. Liu, and J. Xiao, Phys. Plasmas 23 (2016), 072111 27.Multi-scale Full-orbit Analysis on Phase-space Behavior of Runaway Electrons in Tokamak Fields with Synchrotron Radiation, Y. Wang, H. Qin, and J. Liu*, Phys. Plasmas 23 (2016), 062505 28.Collisionless pitch-angle scattering of runaway electrons, J. Liu, Y. Wang, and H. Qin*, Nucl. Fusion 56 (2016), 064002 29.Application of Lie Algebra in Constructing Volume-Preserving Algorithms for Charged Particles Dynamics, R. Zhang, J. Liu*, H. Qin, Y. Tang, and Y. He, Commun. Comput. Phys., 19 (2016), No.5, 1397-1408 30.Higher order volume-preserving schemes for charged particle dynamics, Y. He, Y. Sun, J. Liu, and H. Qin, J Comput. Phys. 305 (2016), 172-184 31.Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov-Maxwell equations, H. Qin, J. Liu, J. Xiao, R. Zhang, Y. He, Y. Wang, Y. Sun, J. Burby, C. Ellison, and Y. Zhou, Nucl. Fusion 56 (2016), 014001 32.Hamiltonian time integrators for Vlasov-Maxwell equations, Y. He, H. Qin, Y. Sun, J. Xiao, R. Zhang, and J. Liu, Phys. Plasmas 22 (2015), 124503 33.Study of retro reflector array for the polarimeter-interferometer system on EAST Tokamak, T. Lan, S. Wang, H. Liu, J. Liu, Y. Jie, Z. Zou, W. Li, X. Gao, and H. Qin, Journal of Instrumentation 10 (2015), c12017 34.Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov- Maxwell systems, J. Xiao, H. Qin, J. Liu, Y. He, R. Zhang, Y. Sun, Phys. Plasmas 22 (2015), 112504 35.Variational symplectic Particle-in-cell simulation of nonlinear mode conversion from Extraordinary waves to Bernstein waves, J. Xiao, J. Liu*, H. Qin, Z. Yu, and N. Xiang, Phys. Plasmas 22 (2015), 092305 36.Comment on `Hamiltonian splitting for the Vlasov-Maxwell equations', H. Qin, Y. He, R. Zhang, J. Liu, J. Xiao, and Y. Wang, J Comput. Phys. 297 (2015), 721-723 37.Volume-preserving algorithm for secular relativistic dynamics of charged particles, R. Zhang, J. Liu, H. Qin, Y. Wang, Y. He, and Y. Sun, Phys. Plasmas 22 (2015), 044501 38.Volume-preserving algorithms for charged particle dynamics, Y. He, Y. Sun, J. Liu, and H. Qin, J Comput. Phys. 281 (2015), 135-147 39.Study of the propagation properties of 432μm laser reflected by retro reflector array, T. Lan, H. Liu, Y. Jie, J. Liu, X. Zhu, Z. Wang, Z. Zou, G. Li, Y. Yang, X. Wei, W. Li, H. Wang, X. Gao, and H. Qin , Infrared Phys. & Tech. 67 (2014), 121-125 40.What is the fate of runaway positrons in tokamaks?, J. Liu, H. Qin, N. Fisch, Q. Teng, and X. Wang, Phys. Plasmas 21 (2014), 064503 41.Canonicalization and symplectic simulation of the gyrocenter dynamics in time-independent magnetic fields, R. Zhang, J. Liu*, Y. Tang, H. Qin, J. Xiao, and B. Zhu, Phys. Plasmas 21 (2014), 032504 42.A Nonlinear PIC algorithm for high frequency waves in magnetized plasmas based on gyrocenter gauge kinetic theory, J. Liu, Z. Yu, and H. Qin, Commun. Comput. Phys., 15 (2014), 1167-1183 43.A Variational Multi-Symplectic PIC Algorithm with Smoothing Functions for the Vlasov-Maxwell System, J. Xiao, J. Liu*, H. Qin and Z. Yu, Phys. Plasmas 20 (2013), 102517 44.On plasma rotation induced by waves in tokamaks, X. Guan, I. Dodin, H. Qin, J. Liu, and N. Fisch, Phys. Plasmas 20 (2013), 102105 45.Why is Boris Algorithm so good? , H. Qin, S. Zhang, J. Xiao, J. Liu, Y. Sun, and W. M. Tang, Phys. Plasmas 20 (2013), 084503 46.On the toroidal plasma rotations induced by lower hybrid waves, X. Guan, H. Qin, J. Liu, and N. Fisch, Phys. Plasmas 20 (2013), 022502 47.Geometric phases of the Faraday rotation of electromagnetic waves in magnetized plasmas, J. Liu and H. Qin, Phys. Plasmas 19 (2012), 102107 48.Response to “Comment on ‘Geometric phase of the gyromotion for charged particles in a time-dependent magnetic field’ ” [Phys. Plasmas 19, 094701 (2012)], J. Liu and H. Qin, Phys. Plasmas 19 (2012), 094701 49.Geometric phase of the gyromotion for charged particles in a time-dependent magnetic field, J. Liu and H. Qin, Phys. Plasmas 18 (2011), 072505 50.One Dimensional Simulation of Diamond DT Methane Impact Fusion, J. Liu, Z. X. Wang, C. Chen, and Y. A. Lei, Nucl. Fusion 49 (2009), 065021 51.Acceleration of Macroscopic Particle to Hypervelocity By High Intensity Beams, J. Liu and Y. Lei, IEEE T. Plasma Sci. 37 (2009), 1993-1997 52.Hypervelocity Macroscopic Particle Impact Fusion with DT Methane, Y. Lei, J. Liu, and Z. Wang, Nucl. Instrum. Meth. A 606 (2009), 157-160 53.A Numerical Fluid Analysis For Early Nonlinear Mode Evolution of Fast Electron Beams in Dense Plasmas, S. Rehman, X. Wang, J. Liu, Y. Lei, and Y. Liu, Plasma Sci. Tech. 11 (2009), 661-665 会议文章 1. Velocity-space Signature of Backward Runaways, N. Fisch, H. Qin, W. Wu, J. Liu, 41st EPS Conference on Plasma Physics P2.053 (2014) 2. Implosion of Large Spherical Void, Y. Lei, B. Sun, J. Liu, and C. Chen, J. Phys.: Conf. Series 244 (2010), 022005 3. Fast Ignition Impact Fusion with DT methane, Y. Lei, J. Liu, Z. Wang, and C. Chen, Proc. 22nd Int. Conf. Geneva, IAEA, (2008), CD-ROM file IF/P7-30 著作 《量子夸克》, 2008年04月,湖南科学技术出版社,<译>刘健、雷奕安。 《磁化等离子体中高频波的理论问题》博士论文,刘健 《量子动力学问题》本科论文,刘健

推荐链接
down
wechat
bug