个人简介
教育经历
2007.9-2011.7 河北师范大学 | 基础数学 | 博士
2004.9-2007.7 河北工业大学 | 应用数学 | 硕士
2000.9-2004.7 河北工业大学 | 数学与应用数学 | 学士
工作经历
2022.12-至今大连理工大学 - 教授
2016.12-2022.12大连理工大学 - School of Mathematical Sciences - 副教授 - Associate Professor
2013.9-2016.12大连理工大学 - 讲师
2011.7-2013.9大连理工大学 - 博士后研究员
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Wen, Shilin.On irreducible operators in factor von Neumann algebras[J],LINEAR ALGEBRA AND ITS APPLICATIONS,2022,565:239-2432022-10-10
Shen, Junhao.SUM OF IRREDUCIBLE OPERATORS IN VON NEUMANN FACTORS[J],PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,2022,148(7):2901-29082022-10-10
石瑞.A reduction theory for operators in type In von Neumann algebras.[J],Houston Journal of Mathematics,2014,40(4):1183-12242022-06-21
石瑞.On the uniqueness of the strongly irreducible decompositions of operators up to similarity.[J],Houston Journal of Mathematics,2014,40(2):447-4652022-06-21
Zhu, Zhangsheng.On a class of operators in the hyperfinite II1 factor.[J],Mathematica Scandinavica,2017,120(2):249-2712022-06-21
Hadwin, Don.A note on representations of commutative C∗-algebras in semifinite von Neumann algebras.[J],OPERATORS AND MATRICES,2018,12(4):1129-11442022-06-21
石瑞.On a generalization of the Jordan canonical form theorem on separable Hilbert spaces.[J],Proceedings of the American Mathematical Society,2012,140(5):1593-16042022-06-21
石瑞.Normed Ideal Perturbation of Irreducible Operators in Semifinite Von Neumann Factors[J],Integral Equations and Operator Theory,2021,93(3):Article number: 342021-07-05
Qihui Li.Perturbations of self-adjoint operators in semifinite von Neumann algebras: Kato-Rosenblum theorem[J],Journal of Functional Analysis,2021,275(2):259-2872021-06-11
Junhan Shen,Rui Shi.SUM OF IRREDUCIBLE OPERATORS IN VON NEUMANN FACTORS[J],PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY,2020,148(7):2901-29082021-03-05
Qihui Li,Junhao Shen,Rui Shi.A generalization of Voiculescu's theorem for normal operators to semifinite von Neumann algebras[J],ADVANCES IN MATHEMATICS,2021,375:107347-2021-03-05
Wen, Shilin,Fang, Junsheng,Shi, Rui.APPROXIMATE EQUIVALENCE OF REPRESENTATIONS OF AF ALGEBRAS INTO SEMIFINITE VON NEUMANN ALGEBRAS[J],OPERATORS AND MATRICES,2019,13(3):777-795
Wen, Shilin,Fang, Junsheng,Shi, Rui.On irreducible operators in factor von Neumann algebras[J],LINEAR ALGEBRA AND ITS APPLICATIONS,2019,565:239-2432019-07-28
Don Hadwin,Rui Shi.A note on representations of commutative C∗-algebras in semifinite von Neumann algebras.[J],OPERATORS AND MATRICES,2018,12(4):1129-11442019-03-13
Qihui Li,Junhao Shen,Rui Shi,Wang, Liguang.Perturbations of self-adjoint operators in semifinite von Neumann algebras: Kato-Rosenblum theor…[J],Journal of Functional Analysis,2018,275(2):259-2872019-03-12
Zhu, Zhangsheng,Fang, Junsheng,Shi, Rui.Von Neumann algebras generated by two unitary operators u and v with u(2) = v(3)=1[J],Journal of Mathematical Analysis and Applications,2017,453(2):1139-11442019-03-12
Zhu, Zhangsheng,Shi, Rui,Fang, Junsheng.On a class of operators in the hyperfinite II1 factor.[J],Mathematica Scandinavica,2017,120(2):249-2712019-03-12
Chunlan Jiang,Rui Shi.On the Uniqueness of Jordan Canonical Form Decompositions of Operators by K-theoretical Data[J],Canadian Mathematical Bulletin. Bulletin Canadien de Mathématiques,2016,59(2):326-3392019-03-13
Dong, Yunbai,Shi, Rui.Stability of isometries between groups of invertible elements in Banach algebras[J],Functional Analysis and its Applications,2015,49(2):106-1092019-03-09
Shi, Rui,Zhou, Xiaoyan.Unitary operators in the orthogonal complement of a type I von Neumann subalgebra in a type II1 …[J],Journal of Mathematical Analysis and Applications,2014,416(1):390-4012019-03-09
Rui Shi.On the uniqueness of the strongly irreducible decompositions of operators up to similarity.[J],Houston Journal of Mathematics,2014,40(2):447-4652019-03-13
Rui Shi.A reduction theory for operators in type In von Neumann algebras.[J],Houston Journal of Mathematics,2014,40(4):1183-12242019-03-13
Ji, Kui,Shi, Rui.Similarity of multiplication operators on the Sobolev disk algebra[J],Acta Mathematica Sinica (English Series),2013,29(4):789-8002019-03-09
Rui Shi.On a generalization of the Jordan canonical form theorem on separable Hilbert spaces.[J],Proceedings of the American Mathematical Society,2012,140(5):1593-1604