当前位置: X-MOL首页全球导师 国内导师 › 杜磊

个人简介

2006年本科毕业于大连理工大学数学与应用数学专业,2008年硕士毕业于大连理工大学计算数学专业(导师:于波 教授),2011年博士毕业于日本名古屋大学计算理工学专攻,获博士(工学)学位(导师:张绍良 教授)。后在筑波大学计算机科学专攻从事博士后研究工作(日本技术振兴机构CREST项目资助,合作导师:Prof. SAKURAI Tetsuya)。2014年回国任职于大连理工大学数学科学学院。主要研究内容包括:大型稀疏线性方程组求解、矩阵特征值计算、高性能科学计算等。 教育经历 2008.10-2011.12 名古屋大学 计算数学 博士 2006.9-2008.6 大连理工大学 计算数学 硕士 2002.9-2006.7 大连理工大学 数学与应用数学 学士 1999.9-2002.7 兰考县第一高级中学 工作经历 2015.12-至今大连理工大学数学科学学院 - 副教授 2014.4-2015.12大连理工大学数学科学学院 - 讲师 2012.1-2014.3日本筑波大学 - 博士后

研究领域

大型稀疏线性方程组求解、矩阵特征值计算、高性能科学计算等

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

周惠巍.Two-perspective Biomedical Named Entity Recognition with Weakly Labeled Data Correction[A],2021,941-9442022-01-29 Chen, Hongjia,Du, Lei.Backward error bounds for polynomial eigenvalue problem solved by a Rayleigh-Ritz type contour i…[J],APPLIED MATHEMATICS LETTERS,2020,1022019-11-29 Zhou, Huiwei,Li, Xuefei,Yao, Weihong,Liu, Zhuang,Ning, Shixian,Lang, Chengkun,Du, Lei.Improving neural protein-protein interaction extraction with knowledge selection[J],COMPUTATIONAL BIOLOGY AND CHEMISTRY,2019,83:1071462019-11-23 杜磊,Akira Imakura,Tetsuya Sakurai.Simultaneous band reduction of two symmetric matrices[J],Computers and Mathematics with Applications,2019,77(8):2207-22202019-03-20 Selim, Basem, I,Yu, Bo,Du, Lei.The GPBiCOR Method for Solving the General Matrix Equation and the General Discrete-Time Periodi…[J],IEEE ACCESS,2018,6:68649-686742019-03-13 Zheng, C. J.,Zhang, C.,Bi, C. X.,Gao, H. F.,Du, L.,Chen, H. B..Coupled FE-BE method for eigenvalue analysis of elastic structures submerged in an infinite flui…[J],INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING,2017,110(2):163-1852019-03-12 Zhang, Chao,Du, Lei,Tao, Dacheng.LSV-Based Tail Inequalities for Sums of Random Matrices[J],NEURAL COMPUTATION,2017,29(1):247-2622019-03-12 Imakura, Akira,Du, Lei,Sakurai, Tetsuya.Relationships among contour integral-based methods for solving generalized eigenvalue problems[J],JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS,2016,33(3):721-7502019-03-12 Lei Du,Tetsuya Sakurai,Akira Imakura.An Algorithm for Simultaneous Band Reduction of Two Dense Symmetric Matrices,RIMS Kôkyûroku,2016,2005:21-312018-01-19 Zheng, Chang-Jun,Chen, Hai-Bo,Zhang, Chuanzeng,Gao, Hai-Feng,Du, Lei.An accurate and efficient acoustic eigensolver based on a fast multipole BEM and a contour integ…[J],JOURNAL OF COMPUTATIONAL PHYSICS,2016,305:677-6992019-03-13 Akira Imakura,Tetsuya Sakurai,Lei Du.A map of contour integral-based eigensolvers for solving generalized eigenvalue problems[P],RIMS Kokyuroku,2015,1957:142-1542018-06-22 A. Imakura, H. Tadano,L. Du.A Weighted Block GMRES method for solving linear systems with multiple right-hand sides,JSIAM Letters,2013,5:65-68 T. Miyata, S.L. Zhang, Y. Yamamoto, T. Sogabe,L. Du.An extension of the Sakurai-Sugiura method for eigenvalue problems of multiply connected region,Transactions of the Japan Society for Industrial and Applied Mathematics,2009,19(4):537-5502016-09-12 Du, L.,Sogabe, T.,Yu, B.,Yamamoto, Y.,Zhang, S.L..A block IDR(s) method for nonsymmetric linear systems with multiple right-hand sides[J],JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,2011,235(14):4095-41062019-03-09 Du, Lei,Sogabe, Tomohiro,Zhang, Shao-Liang.An algorithm for solving nonsymmetric penta-diagonal Toeplitz linear systems[J],APPLIED MATHEMATICS AND COMPUTATION,2014,244:10-152019-03-09 Gu, Xian-Ming,Huang, Ting-Zhu,Yin, Guojian,Carpentieri, Bruno,Wen, Chun,Du, Lei.Restarted Hessenberg method for solving shifted nonsymmetric linear systems[J],JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS,2018,331:166-1772019-03-11 Du, Lei,Sogabe, Tomohiro,Zhang, Shao-Liang.A fast algorithm for solving tridiagonal quasi-Toeplitz linear systems[J],APPLIED MATHEMATICS LETTERS,2018,75:74-812019-03-11 Zheng, Chang-Jun,Chen, Hai-Bo,Gao, Hai-Feng,Du, Lei.Is the Burton-Miller formulation really free of fictitious eigenfrequencies?[J],ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS,2015,59:43-512019-03-09 Imakura, Akira,Du, Lei,Sakurai, Tetsuya.Error bounds of Rayleigh-Ritz type contour integral-based eigensolver for solving generalized ei…[J],NUMERICAL ALGORITHMS,2016,71(1):103-1202019-03-09 郑昌军,高海峰,杜磊,陈海波.边界元特征值分析及 Burton-Miller法探究[J],计算力学学报,2016,33(3):335-342

推荐链接
down
wechat
bug