当前位置: X-MOL首页全球导师 国内导师 › 易红亮

个人简介

受教育经历 2007.03-2010.08:韩国浦项工科大学钢铁学院,计算金属材料实验室,博士 2003.09-2005.07:哈尔滨工业大学材料科学系,材料学,硕士 1998.09-2002.07:哈尔滨工业大学材料工程系,材料成型及控制,本科 研究工作经历 2017.10-至今:育材堂(苏州)材料科技有限公司,董事长兼技术总裁 2015.01-至今:东北大学轧制及连轧自动化国家重点实验室,教授 2013.01-2014.12:东北大学轧制及连轧自动化国家重点实验室,副教授 2010.08-2012.12:莱芜钢铁集团技术中心先进钢铁材料研究所,副所长、集团公司科学技术委员会委员 2005.07-2007.01:中国汽车工程研究院材料与工艺研究部,助理工程师

研究领域

高强韧钢铁材料基础理论、应用技术及产业化:高强韧汽车钢、汽车钢电阻点焊及激光拼焊、新型轴承钢、超高强韧装甲钢、高应力板簧钢、热作模具钢、大尺寸耐磨钢等

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] J.C. Pang, W.F. Yang, G.D. Wang, S.J. Zheng, R.D.K. Misra, H.L. Yi*. Divorced eutectoid transformation in high-Al added steels due to heterogenous nucleation of κ-carbide. Scripta Materialia (IF 6.302), 2022, 209: 114395. [2] P. Chen, X.W. Li, P.F. Wang, G.D. Wang, J.Y. Guo, R.D. Liu, H.L. Yi*. Partitioning-related microstructure evolution and mechanical behavior in a δ-quenching and partitioning steel. Journal of Materials Research and Technology (IF 6.267), 2022, 17: 1338-1348. [3] P. Chen, X. Xu, C. Lin, F.M. Yang, J.C. Pang, X.W. Li, H.L. Yi*. Controlling carbide evolution to improve the ductility in high specific Young’s modulus steels. Acta Metallurgica Sinica (English Letters) (IF 3.024), 2022, 35: 1703-1711. [4] Z.X. Li, Y.L. Chen, L.C. Zhang, R.D.K. Misra, H.L. Yi*. Enhancement of mechanical properties in dissimilar resistance spot welds between galvannealed dual phase and Al–Si coated press hardening steels. ISIJ International (IF 1.864), 2022, 62(11): 2355-2365. [5] P. Chen, J. Fu, X. Xu, C. Lin, J.C. Pang, X.W. Li, R.D.K. Misra, G.D. Wang, H.L. Yi*. A high specific Young’s modulus steel reinforced by spheroidal kappa-carbide. Journal of Materials Science & Technology (IF 10.319), 2021, 87: 54-59. [6] D.P. Yang, P.J. Du, D. Wu, H.L. Yi*. The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process. Journal of Materials Science & Technology (IF 10.319), 2021, 75: 205-215. [7] B.G. Wang, G.D. Wang, R.D.K. Misra, H.L. Yi*. Increased hot-formability and grain-refinement by dynamic recrystallization of ferrite in an in situ TiB2 reinforced steel matrix composite. Materials Science and Engineering A (IF 6.044), 2021, 812: 141100. [8] F.Y. Zhao, P. Chen*, B.Y. Xu, Q. Yu, R.D.K. Misra, G.D. Wang, H.L. Yi*. Martensite transformation of retained austenite with diverse stability and strain partitioning during tensile deformation of a carbide-free bainitic steel. Materials Characterization (IF 4.537), 2021, 179: 111327. [9] H.L. Cai, J.F. Wang*, D. Wu, H.L. Yi*. A simple methodology to determine fracture strain of press-hardened steels under plane strain bending. Metallurgical and Materials Transactions A (IF 2.726), 2021, 52: 644-654. [10] B. Deng, Z.Y. Hou, G.D. Wang, H.L. Yi*. Toughness improvement in a novel martensitic stainless steel achieved by quenching–tempering and partitioning. Metallurgical and Materials Transactions A (IF 2.726), 2021, 52: 4852-4864. [11] M.K. Bai, D.P. Yang, G.D. Wang, J.H. Ryu, K.Y. Lee, R.D.K. Misra, H.L. Yi*. Austenite/ferrite interface movement during intercritical annealing of a medium Mn steel. Materials Science and Technology (IF 2.060), 2021, 37(8): 745-751. [12] L.Q. Liu, X.C. Xiong*, G.D. Wang, H.L. Yi*. Suppression of austenite grain coarsening by ferrite pinning during pseudo-carburizing treatment. Journal of Materials Engineering and Performance (IF 2.036), 2021, 30: 2381-2388. [13] H.L. Cai, P. Chen, J.K. Oh, Y.R. Cho, D. Wu, H.L. Yi*. Quenching and flash-partitioning enables austenite stabilization during press-hardening processing. Scripta Materialia (IF 6.302), 2020, 178: 77-81. [14] D.P. Yang, D. Wu, H.L. Yi*. Comments on “The effects of the heating rate on the reverse transformation mechanism and the phase stability of reverted austenite in medium Mn steels” by J. Han and Y.-K. Lee, Acta Materialia 67 (2014) 354-361. Scripta Materialia (IF 6.302), 2020, 174: 11-13. (评论文章) [15] X. Xu, B.Y. Xu, P. Chen, R.D. Liu, G.D. Wang, H.L. Yi*. Effect of austenite stability on the hole expansion behavior of δ-TRIP steels. Materials Today Communications (IF 3.662), 2020, 174: 101034. [16] F.Y. Zhao, P. Chen, B.Y. Xu, Q. Yu, G.D. Wang, H.L. Yi*. A carbide-free bainitic steel with high-ductility by dynamic transformation during coiling process. Materials Science and Technology (IF 2.060), 2020, 36(15): 1704-1711. [17] 易红亮*, 常智渊, 才贺龙, 杜鹏举, 杨达朋. 热冲压成形钢的强度与塑性及断裂应变. 金属学报 (IF 1.797), 2020, 56(4): 429-443. [18] Z.R. Hou, T. Opitz, X.C. Xiong, X.M. Zhao, H.L. Yi*. Bake-partitioning in a press-hardening steel. Scripta Materialia (IF 6.302), 2019, 162: 492-496. [19] D.P. Yang, D. Wu, H.L. Yi*. Reverse transformation from martensite into austenite in a medium-Mn steel. Scripta Materialia (IF 6.302), 2019, 161: 1-5. [20] P.J. Du, D.P. Yang, M.K. Bai, X.C. Xiong, D. Wu, G.D. Wang, H.L. Yi*. Austenite stabilization by two-step partitioning of manganese and carbon in Mn-TRIP steels. Materials Science and Technology (IF 2.060), 2019, 35: 2084-2091. [21] 王宝刚,易红亮*,王国栋,骆智超,黄明欣. 原位生成铁基复合材料中TiB2的三维形貌重构. 金属学报 (IF 1.797), 2019, 55(1): 133-140. [22] P. Chen, G.D. Wang, A.V. Ceguerra, A.J. Breen, S.P. Ringer, X.C. Xiong, Q. Lue, J.F. Wang, H.L. Yi*. Yield strength enhancement by carbon trapping in ferrite of the quenching and partitioning steel. Metallurgical and Materials Transactions A (IF 2.726), 2018, 49(1): 235-240. [23] H.L. Yi*, L. Sun, X.C. Xiong. Challenges in the formability of the next generation of automotive steel sheets. Materials Science and Technology (IF 2.060), 2018, 34(9): 1112-1117. [24] Z.R. Hou, X.M. Zhao, W. Zhang, H.L. Liu, H.L. Yi*. A medium manganese steel designed for water quenching and partitioning. Materials Science and Technology (IF 2.060), 2018, 34(10): 1168-1175. [25] J.C. Pang, B.Y. Xu, G.D. Wang, Q. Lu, J.F. Wang, H.L. Yi*. Effect of silicon and aluminum in ferrite on tensile and impact properties. Materials Science and Technology (IF 2.060), 2017, 33(15): 1806-1810. [26] P. Chen, X.C. Xiong, G.D. Wang, H.L. Yi*. The origin of the brittleness of high aluminum pearlite and the method for improving ductility. Scripta Materialia (IF 6.302), 2016, 124: 42-46. [27] P. Chen, G.D. Wang, X.C. Xiong, H.L. Yi*. Abnormal expansion due to pearlite-to-austenite transformation in high aluminium-added steels. Materials Science and Technology (IF 2.060), 2016, 32: 1678-1682. [28] X.C. Xiong, L. Sun, J.F. Wang, X.Y. Jin, L. Wang, B.Y. Xu, P. Chen, G.D. Wang, H.L. Yi*. Properties assessment of the first industrial coils of low-density duplex δ-TRIP steel. Materials Science and Technology (IF 2.060), 2016, 32: 1403-1408. [29] M.K. Bai, J.C. Pang, G.D. Wang, H.L. Yi*. Martensitic transformation cracking in high carbon steels for bearings. Materials Science and Technology (IF 2.060), 2016, 32: 1179-1183. (特邀论文 “Recent developments in bearing steels”) [30] M.X. Huang*, B.B. He, X. Wang, H.L. Yi*. Interfacial plasticity of a TiB2-reinforced steel matrix composite fabricated by eutectic solidification. Scripta Materialia (IF 6.302), 2015, 99: 13-16. [31] H.L. Yi*. Review on δ-transformation-induced plasticity (trip) steels with low density: The concept and current progress. JOM, 2014, 66(9): 1759-1769. (特邀论文: “Processing-Structure-Property Correlation of Low Density Steels”) [32] H.L. Yi*, P. Chen, H.K.D.H. Bhadeshia. Optimising the morphology and stability of retained austenite in a δ-TRIP steel. Metallurgical and Materials Transactions A (IF 2.762), 2014, 45(8): 3512-3518. [33] H.L. Yi*, H.L. Cai, Z.Y. Hou, J.C. Pang, D. Wu, G.D. Wang. Low density steel 1.2C-1.5Cr-5Al designed for bearings. Materials Science and Technology (IF 2.060), 2014, 30(9): 1045-1049. [34] H.L. Yi*, P. Chen, Z.Y. Hou, N. Hong, H.L. Cai, Y.B. Xu, D. Wu, G.D. Wang. A novel design: Partitioning achieved by quenching and tempering (Q–T & P) in an aluminium-added low-density steel. Scripta Materialia (IF 6.302), 2013, 68(6): 370-374. (特邀论文: “Low-Density Steels”) [35] H.L. Yi*, Z.Y. Hou, Y.B. Xu, D. Wu, G.D. Wang. Acceleration of spheroidization in eutectoid steels by the addition of aluminum. Scripta Materialia (IF 6.302), 2012, 67: 645-648. [36] H.L. Yi, J.H. Ryu, H.K.D.H. Bhadeshia*, H.W. Yen, J.R. Yang. Low-alloy duplex, directly-quenched TRIP-steel. Scripta Materialia (IF 6.302), 2011, 65(7): 604-607. [37] H.L. Yi, K.Y. Lee, H.K.D.H. Bhadeshia*. Mechanical stabilisation phenomenon of retained austenite in δ-TRIP steel. Materials Science & Engineering A (IF 6.044), 2011, 528: 5900-5903. [38] H.L. Yi, K.Y. Lee, H.K.D.H. Bhadeshia*. Extraordinary ductility in al-bearing delta-TRIP steel. Proceedings of the Royal Society A (IF 3.213), 2011, 467: 234-243. (被该杂志评为2011年度引用排名第二的文章) [39] H.L. Yi, K.Y. Lee, H.K.D.H. Bhadeshia*. Stabilisation of ferrite in hot rolled δ-TRIP steel. Materials Science &Technology (IF 2.060), 2011, 27: 525-529. [40] H.L. Yi*, S. Ghosh, H.K.D.H. Bhadeshia. Dual-phase hot-press forming alloy. Materials Science & Engineering A (IF 6.044), 2010, 527: 4870-4874. [41] H.L. Yi*. Full pearlite obtained by slow cooling in medium carbon steel. Materials Science & Engineering A (IF 6.044), 2010, 527: 7600-7604. [42] H.L. Yi, K.Y. Lee, H.K.D.H. Bhadeshia*. Spot weldability of δ-TRIP steel containing 0.4 wt% C. Science and Technology of Welding & Joining (IF 4.114), 2010, 15(7): 619-624. [43] H.L. Yi, S.K. Ghosh, W.J. Liu, K.Y. Lee, H.K.D.H. Bhadeshia*. Non-equilibrium solidification and ferrite in δ-TRIP steel. Materials Science & Technology (IF 2.060), 2010, 26: 817-823.

推荐链接
down
wechat
bug