近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
(1) Hong H#, Mo Y#, Li D#, Xu Z, Liao Y, Yin P, Liu X, Xia Y, Fang J*, Wang Q* and Fang S*. Aberrant Expression Profiles of lncRNAs and Their Associated Nearby Coding Genes in the Hippocampus of the SAMP8 Mouse Model with AD. Mol Ther Nucleic Acids. 2020; 20:140-154.
(2) Luo Y#, Li D#, Liao Y#, Cai C, Wu Q, Ke H, Liu X, Li H, Hong H, Xu Y, Wang Q*, Fang J*, Fang S*. Systems Pharmacology Approach to Investigate the Mechanism of Kai-Xin-San in Alzheimer’s Disease. Frontiers in Pharmacology. 2020; 11: 381.
(3) Liu Z#, Cai C#, Du J#, Liu B, Cui L, Fan X, Fang J*, Xie L*.TCMIO: A Comprehensive Database of Traditional Chinese Medicine on Immuno-Oncology. Frontiers in Pharmacology. 2020; 11: 439.
(4) Huang Y, Fang J*, Lu W*, Wang Z, Wang Q, Hou Y, Jiang X, Reizes O, Lathia J, Nussinov R, Eng C, Cheng F*. A systems pharmacology approach uncovers wogonoside as a novel angiogenesis inhibitor of triple-negative breast cancer by targeting Hedgehog signaling, Cell Chem Biol, 2019; 26: 1-16.
(5) Guo P, Cai C, Wu X, Fan , Huang W, Zhang Y*, Fang J*. An Insight Into the Molecular Mechanism of Berberine Towards Multiple Cancer Types Through Systems Pharmacology. Front Pharmacol 2019;10:857.
(6) Cai C, Guo P, Zhou Y, Zhou J, Wang Q, Zhang F, Fang J*, Cheng F*. Deep Learning-Based Prediction of Drug-Induced Cardiotoxicity. J Chem Inf Model 2019;59(3):1073-1084.
(7) Fang J, Cai C, Chai Y, Zhou J, Huang Y, Gao L, Wang Q, Cheng F*. Quantitative and systems pharmacology 4. Network-based analysis of drug pleiotropy on coronary artery disease. Eur J Med Chem 2019; 161:192-204.
(8) Wu Q#, Cai C#, Guo P, Chen M, Wu X, Zhou J, Luo Y, Zou Y, Liu AL, Wang Q, Kuang Z*, Fang J*. In Silico Identification and Mechanism Exploration of Hepatotoxic Ingredients in Traditional Chinese Medicine. Front Pharmacol 2019;10:458.
(9) Wu Q, Ke H, Li D, Wang Q, Fang J*, Zhou J*. Recent Progress in Machine Learning-based Prediction of Peptide Activity for Drug Discovery. Curr Top Med Chem 2019;19(1):4-16.
(10) Wang L#, Fang J#, Jiang H, Wang Q, Xue S, Li Z, Liu R. 7-pyrrolidinethoxy-4'-methoxyisoflavone prevents amyloid β–induced injury by regulating histamine H3 receptor-mediated cAMP/CREB and AKT/GSK3β pathways. Frontiers in neuroscience 2019; 13, 334
(11) Fang J, Liu C, Wang Q, Lin P, and Cheng F*. In silico polypharmacology of natural products. Brief Bioinform, 2018;19(6):1153-1171.
(12) Luo YX, Wang XY, Huang YJ, Wang Q*, Fang J*. Systems pharmacology-based investigation of Sanwei Ganjiang Prescription: related mechanisms in liver injury. Chin J Nat Med. 2018;16(10):756-765.
(13) Cai C, Fang J*, Guo P, Wang Q, Hong H, Moslehi J, Cheng F*. In Silico Pharmacoepidemiologic Evaluation of Drug-Induced Cardiovascular Complications Using Combined Classifiers. J Chem Inf Model 2018;58(5):943-956
(14) Cai H, Luo Y, Yan X, Fang J*, Wang Q*, Xu J*. The mechanisms of Bushen-Yizhi formula as a therapeutic agent against Alzheimer’s disease. Sci Rep 2018;8(1):3104.
(15) Fang J, Gao L, Wang Q*, Cheng F*. Quantitative and systems pharmacology 3. Network-based identification of new targets for natural products enables potential uses in aging-associated disorders. Front Pharmacol. 2017; 8: 747.
(16) Fang J#, Wu Z#, Cai C, Wang Q, Tang Y*, Cheng F*. Quantitative and systems pharmacology. 1. In silico prediction of drug-target interactions of natural products enables new targeted cancer therapy. J Chem Inf Model. 2017; 57(11): 2657-2671.
(17) Fang J, Wang L, Wu T, Yang C, Gao L, Cai H, Liu J, Fang S, Chen Y, Tan W*, Wang Q*. Network pharmacology-based study on the mechanism of action for herbal medicines in Alzheimer treatment. J Ethnopharmacol. 2017; 196:281-292
(18) Fang J, Cai C, Wang Q, Ping L, Zhao Z*, and Cheng F*. Systems Pharmacology-Based Discovery of Natural Products for Precision Oncology Through Targeting Cancer Mutated Genes. CPT Pharmacometrics Syst Pharmacol. 2017; 6(3):177-187.
(19) Fang J, Wang L, Li Y, Lian W, Pang X, Wang H, Yuan D, Wang Q, Liu AL*, Du GH*. AlzhCPI: A knowledge base for predicting chemical-protein interactions towards Alzheimer’s disease. PloS one 12 (5), e0178347.
(20) Fang J, Pang X, Yan R, Lian W, Li C, Wang Q, Liu AL*, Du GH*. Discovery of neuroprotective compounds by machine learning approaches. RSC Advances 2016, 6 (12), 9857-9871
(21) Fang J, Pang X, Wu P, Yan R, Gao L, Li C, Lian W, Wang Q, Liu AL*, Du GH*.Molecular Modeling on Berberine Derivatives toward BuChE: An Integrated Study with Quantitative Structure–Activity Relationships Models, Molecular Docking, and Molecular Dynamics Simulations. Chem Biol Drug Des 2016;87(5):649-63.
(22) Fang J, Li Y, Liu R, Pang X, Li C, Yang R, He Y, Lian W, Liu AL*, Du GH*. Discovery of multitarget-directed ligands against Alzheimer’s disease through systematic prediction of chemical-protein interactions. J Chem Inf Model. 2015; 55(1): 149-164.
(23) Fang J, Yang R, Gao L, Yang S, Pang X, Li C, He Y, Liu AL*, Du GH*. Consensus models for CDK5 inhibitors in silico and their application to inhibitor discovery. Molecular diversity 2014; 19 (1), 149-162.
(24) Fang J, Wu P, Yang R, Gao L, Li C, Wang D, Wu S, Liu AL*, Du GH*. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation. Acta Pharm Sin B 2014;4(6):430-7.
(25) Fang J, Yang R, Gao L, Zhou D, Yang S, Liu AL*, Du GH*. Predictions of BuChE inhibitors using support vector machine and naive Bayesian classification techniques in drug discovery. J Chem Inf Model. 2013;53(11):3009-20.
(26) Fang J, Huang D, Zhao W, Ge H, Luo HB*, Xu J*. A new protocol for predicting novel GSK-3β ATP competitive inhibitors. J Chem Inf Model. 2011;51(6):1431-8.