当前位置: X-MOL首页全球导师 国内导师 › 李焕杰

个人简介

李焕杰,大连理工大学生物医学工程学院副教授,博士生导师。大连理工大学“星海骨干”,国际脑影像和行为期刊BBI-intergrative编委,Frontiers in Neuroscience期刊的review editor,中国心理学会脑成像专委会委员。2015年博士毕业于北京大学医学物理专业,并于2016年至2018年在美国哈佛大学医学院麦克林医院(全美排名第一的精神病医院)进行为期2年的博士后科学研究。主要研究方向:围绕“个体-组间-中心间”建立一体化的大样本脑功能和脑结构磁共振成像数据质量增强和分析平台,全面保障不同维度(个体- 组间-中心间)和不同角度(结构-功能)磁共振成像数据研究的准确性和可靠性。建立客观可靠的脑重大精神疾病和脑发育影像指标,推动脑影像研究成果向临床转化,助力实现精准医疗。目前已在脑成像领域权威期刊(NeuroImage和Human Brain Mapping)发表高水平期刊论文20余篇,国际会议论文20余篇,软件著作权2项,联合出版脑科学专著1部。主持国家自然科学基金项目1项、省部级项目2项,获批辽宁省国际科技合作计划项目(100万元);作为项目骨干参与中国脑计划的科技创新2030--“脑科学与类脑研究“重大项目,其中个人承担科研经费100.0万元,参与国家级项目5项,个人承担科研总经费300余万元。 教育经历 2010.9 2015.7 北京大学 核技术与应用 博士 2006.9 2010.7 大连理工大学 光信息科学与技术 学士 2003.9 2006.6 辽宁省大石桥市第二高中 其他奖励 2018年国际医学磁共振学会(ISMRM)实习教育奖(trainee educational stipend) (2018年) 2015年CBME年会青年论文竞赛优秀奖 (2015年)

研究领域

建立ASD多模态客观科学诊断指标,实现ASD的早期预测、早期诊断和精准治疗,对ASD进行有效的饮食干预和运动干预,解决ASD终身患病的社会难题 建立孤独症谱系障碍(ASD)多模态客观科学诊断指标,实现ASD的早期预测、早期诊断和精准治疗,对ASD进行有效的饮食干预和运动干预,解决ASD终身患病的社会难题 研究方向三:利用磁共振成像技术研究脑血流,脑网络,脑功能的在不同脑认知和脑疾病状态下的相互作用机制。 研究方向二:多中心、多模态磁共振成像数据融合(data-fusion)方法的研究。去除不同成像中心间因机器型号不同、采集参数不同,带来的数据偏差,获得无机器噪声影响的多中心融合磁共振成数(MRI)数据,促进多成像中心间的 MRI数据融合分析。避免因单一中心样本量少,样本偏差大,导致研究结果不可靠,可重复性低这一问题。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

D.Y. Zhou, Z.M. Liu, G.Y. Gong, Y.G. Zhang, L. Lin, K.L. Cai, H.S. Xu, F.Y. Cong, H.J. Li*, A.G. Chen*. Decreased functional and structural connectivity is associated with core symptom improvement in children with autism spectrum disorder after Mini-Basketball Training Program. Journal of Autism and Developmental Disorders. 2023, Accepted. JCR-Q1 Y.X. Hao, H.S. Xu, M.R. Xia, C.W. Yan, Y.G. Zhang, D.Y. Zhou, T. Kärkkäinen, L.D. Nickerson*, H.J. Li*, F.Y. Cong. Removal of site effects and enhancement of signal using dual projection independent component analysis for pooling multi-site MRI data. European Journal of Neuroscience. 2023, 58(6): 3466-3487. JCR-Q2 H.S. Xu, Y.X. Hao, Y.G. Zhang, D.Y. Zhou, T. Kärkkäinen, L.D. Nickerson*, H.J. Li*, F.Y. Cong. Harmonization of multi-site functional MRI data with dual-projection based ICA model. Frontiers in neuroscience, 2023, 17: 1225606. JCR-Q2 W. Zhao, H.J. Li* (co-first author), Y.X. Hao, G.Q. Hu, Y.G. Zhang, B.B. Frederick*, F.Y. Cong. An Efficient fMRI Data Reduction Strategy Using Neighborhood Preserving Embedding Algorithm. Human Brain Mapping, 2022, 43(5): 1561-1576. JCR-Q1 L. Lin, J.D Zhang, Y.T Liu, X.Y Hao, J. Shen, Y. Yu, H.S Xu, F.Y Cong, H.J Li*, J.L Wu*. Aberrant Brain Functional Networks in Type 2 Diabetes Mellitus: A Graph Theoretical and Support-vector Machine Approach. Frontiers in Human Neuroscience, 2022, Online. JCR-Q2 W. Zhao, H.J. Li (co-first author), Y.X. Hao, F.Y. Cong*. Consistency of Independent Component Analysis for FMRI. Journal of Neuroscience Methods. 2021, 351: 109013. H.J. Li, Smith. SM, Gruber. S, Lukas. SE, Silveri. MM, Hill KP, Killgore WDS, Nickerson LD.Denoising scanner effects from multimodal MRI data using linked independent component analysis. NeuroImage, 2020, 208: 116388. JCR-Q1 H.J. Li, L.D. Nickerson, T.E. Nichols, J.H. Gao*. Comparison of a voxelation-corrected cluster-size test withTFCE inference for group-level MRI analysis. Human Brain Mapping, 2017, 38: 1269-1280. JCR-Q1 H.J. Li, L.D. Nickerson, J.H. Xiong, Q.H. Zou, Y. Fan, Y.J. Ma, T.Q. Shi, J.Q. Ge, J.H. Gao*. A high performance3D cluster-based test of unsmoothed fMRI data. NeuroImage, 2014, 98: 537-546. JCR-Q1 H.J. Li*, L.D. Nickerson, X.N. Zhao, T.E. Nichols, J.H. Gao*. A Voxelation-corrected Non-stationary 3D Cluster-size Test Based on Random Field Theory. NeuroImage, 2015, 118: 676-682. JCR-Q1 G.Q Hu, H.J. Li, W.Zhao, Y.X Hao, Z.L Bai, L.D Nickerson, F.Y Cong, Discovering hidden brain network responses to naturalistic stimuli via tensor component analysis of multi-subject fMRI data, NeuroImage, 2022, 255, 119193. Y.Y. Zhang, W.Y. Du, Y.Y. Yin, H.J. Li, Z.W. Liu, Y. Yang, Y. Han, J.H. Gao. Impaired cerebral vascular and metabolic responses to parametric N-back tasks in subjective cognitive decline. Journal of Cerebral Blood Flow & Metabolism. 2021, 41: 2743-2755. JCR-Q1 YY. Zhang, YY. Yin, H.J. Li, JH. Gao. Measurement of CMRO 2 and its relationship with CBF in hypoxia with an extended calibrated BOLD method. Journal of Cerebral Blood Flow & Metabolism. 2020, 40: 2066-2080. JCR-Q1 G.Q Hu, Q. Zhang, A.B. Waters, H.J. Li, C. Zhang, J.L Wu, F.Y Cong, L.D Nickerson. Tensor clustering on outer-product of Coefficient and Component Matrices of Independent Component Analysis for Reliable Functional Magnetic Resonance Imaging Data Decomposition. Journal of Neuroscience Methods, 2019, 325:108359. JCR-Q2 R. Mahini, TY. Zhou, P Li, AK. Nandi, H.J. Li, H. Li, FY. Cong. Cluster Aggregation for Analyzing Event-Related Potentials.Advance in Neural Networks, PT II.14th International Symposium on Neural Networks (ISNN). 2017, 10262:507-515. EI X. Jiang, J.W. Sheng, H.J. Li, Y.H. Chai, X. Zhou, B. Wu, X.D. Guo, J.H. Gao*. Detection of Sub-NanoteslaOscillatory Magnetic Fields Using MRI. Magn. Reson. Med. 75: 519-26, 2016. JCR-Q1 Y.J. Ma, W.T. Liu, X.N. Zhao, W.N. Tang, H.J. Li, Y. Fan, X. Tang, Y.Y. Zhang, J.H. Gao*. 3D inter-slab echo-shifted FLASH sequence for susceptibility weighted imaging. Magn. Reson. Med. 2016, 76: 222-228. JCR-Q1 Y.J. Ma, W.T. Liu, X.N. Zhao, W.N. Tang, X. Tang, Y. Fan, H.J. Li, J.H. Gao*. Improved Adaptive Reconstructionof Multichannel MR Images. Med. Physics. 2015, 42: 637-44. JCR-Q2 Y. Fan, L.D. Nickerson, H.J. Li, Y.J. Ma, B.J. Lyu, X.Y. Miao, Y. Zhuo, J.Q. Ge, Q.H. Zou, J.H. Gao*. Functional Connectivity-Based Parcellation of the Thalamus: An Unsupervised Clustering Method and Its Validity Investigation. Brian Connec. 2015, 5: 620-630. JCR-Q2 X. Jiang, H.J. Li, Q.F. Luo, J.H. Gao*. Modeling MR signal change induced by oxygen effect in neuronal tissuepreparations of various geometries. Mag. Reson. Med. 2011, 65: 1258-64. JCR-Q1

推荐链接
down
wechat
bug