个人简介
Licentiaat in Chem., PhD in Structural Chem. (Univ. of Antwerpen, Belgium), Postdoctoral Fellowship (McMaster Univ., Canada), HCM Fellow (Univ.of Cambridge), DSc (UMIST), FRSC
研究领域
An important goal of computational chemistry is obtaining accurate solutions of the Schrödinger equation for molecular systems. Much effort has been devoted to the efficient computation of energy and its derivatives with respect to nuclear displacement. The other part of the solution of the Schrödinger equation is the wave function. From it one can obtain the electron density, which is a key observable. The electron density has an interesting topology, which has been studied in detail by a modern theory called "Atoms in Molecules"(AIM). This theory, due to the work of the Bader group, is rooted in quantum mechanics. AIM can be regarded as a generalization of quantum mechanics to subspaces, that is, atoms. More than a hundred laboratories worldwide use AIM to obtain rigorous chemical insight from modern wave functions. These areas include high-resolution X-ray crystallography, biochemistry, mineralogy, transition metal chemistry, physical organic chemistry, drug design, molecular dynamics and others. AIM uses the language of dynamical systems (e.g. critical points, gradient vector field, manifold) to describe the topology of the electron density and its Laplacian. This point of view can be transferred to other functions such as the Electron Localisation Function (ELF).
The name "Quantum Chemical Topology (QCT)" characterizes better the core of AIM theory, recent developments in both our own and other labs, and future realizations.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Shaun T. Mutter, François Zielinski, Paul L. A. Popelier and Ewan W. Blanch. Calculation of Raman optical activity spectra for vibrational analysis. The Analyst. 2015 January; eScholarID:259663
A.P. Harding , P.L.A. Popelier, J. Harvey, A. Giddings, G. Foster and M. Kranz. Evaluation of aromatic amines with different purities and different solvent vehicles in the Ames test. Regulatory Toxicology and Pharmacology. 2015; 71: 244-250. eScholarID:252571
I.Alkorta and P. Popelier. Linear free energy relationships between a single gas-phase ab initio equilibrium bond length and experimental pKa values in aqueous solution. ChemPhysChem. 2015; 16: 465-469. eScholarID:252578
P.L. Ayers, R.J. Boyd, P. Bultinck, M. Caffarel, R. Carbó-Dorca, M. Causá, J. Cioslowski, J. Contreras-Garcia, D. L. Cooper, P. Coppens, C. Gatti, S. Grabowsky, P. Lazzeretti, P. Macchi, Á. Martín Pendás, P.L.A. Popelier, K. Ruedenberg, H. Rzepa, A. Savin, A. Sax, W.H.E. Schwarz, S. Shahbazian, B. Silvi, M. Solà, V.Tsirelson. Six questions on topology in theoretical chemistry. Computational and Theoretical Chemistry. 2015; 1053: 2-16. eScholarID:252573
T.J. Hughes and P.L.A. Popelier. Where does charge reside in amino acids? The effect of side-chain protonation state on the atomic charges of Asp, Glu, Lys, His and Arg. Computational and Theoretical Chemistry. 2015; 1053: 298-304. eScholarID:252575
Bubalo M, Radosevic K, Srcek V, Das R, Popelier P, Roy K. Cytotoxicity towards CCO cells of imidazolium ionic liquids with functionalized side chains: Preliminary QSTR modeling using regression and classification based approaches. Ecotoxicology and Environmental Safety. 2015; 112: 22-28. eScholarID:252521 | DOI:10.1016/j.ecoenv.2014.10.029
Hughes T, Kandathil S, Popelier P. Accurate prediction of polarised high order electrostatic interactions for hydrogen bonded complexes using the machine learning method kriging. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy. 2015; 136 Pt A: 32-41. eScholarID:252524 | DOI:10.1016/j.saa.2013.10.059
Mark Z. Griffiths and Paul L.A. Popelier. Characterising Heterocyclic Rings Through Quantum Chemical Topology. In: F. De Proft, P. Geerlings, ed. Topics in Heterocyclic Chemistry 38. 3. Germany, Springer.2014: eScholarID:252554
Kunal Roy, Paul L.A. Popelier. Chemometric modeling of the chromatographic lipophilicity parameter logk0 of ionic liquid cations with ETA and QTMS descriptors. Journal of Molecular Liquids. 2014; 200: 223-228. eScholarID:252488
Popelier PLA. The QTAIM Perspective of Chemical Bonding. In: G. Frenking and S. Shaik, ed. The Nature of the Chemical Bond Revisited. 8. Germany, Wiley-VCH.2014: eScholarID:252563
Timothy L. Fletcher , Shaun M. Kandathil and Paul L. A. Popelier. The prediction of atomic kinetic energies from coordinates of surrounding atoms using kriging machine learning. Theoretical Chemistry Accounts. 2014; 133: 1499-1459. eScholarID:252535
Anthony J Green and Paul LA Popelier. Theoretical Prediction of Hydrogen-Bond Basicity pKBHX Using Quantum Chemical Topology Descriptors. Journal of Chemical Information and Modeling. 2014; 54: 553-561. eScholarID:250359 | DOI:dx.doi.org/10.1021/ci400657c
Cardamone S, Hughes T, Popelier P. Multipolar electrostatics. Physical Chemistry Chemical Physics. 2014; 16(22): 10367-10387. eScholarID:252525 | DOI:10.1039/c3cp54829e
Fletcher T, Davie S, Popelier P. Prediction of Intramolecular Polarization of Aromatic Amino Acids Using Kriging Machine Learning. Journal of Chemical Theory and Computation. 2014; 10(9): 3708-3719. eScholarID:252528 | DOI:10.1021/ct500416k
Liem S, Popelier P. The hydration of serine: multipole moments versus point charges. Physical Chemistry Chemical Physics. 2014; 16(9): 4122-4134. eScholarID:252530 | DOI:10.1039/c3cp54723j
Mills M, Popelier P. Electrostatic Forces: Formulas for the First Derivatives of a Polarizable, Anisotropic Electrostatic Potential Energy Function Based on Machine Learning. Journal of Chemical Theory and Computation. 2014; 10(9): 3840-3856. eScholarID:252523 | DOI:10.1021/ct500565g
Roy K, Das R, Popelier P. Quantitative structure-activity relationship for toxicity of ionic liquids to Daphnia magna: Aromaticity vs. lipophilicity. Chemosphere. 2014; 112: 120-127. eScholarID:252527 | DOI:10.1016/j.chemosphere.2014.04.002
Yuan Y, Mills M, Popelier P, Jensen F. Comprehensive Analysis of Energy Minima of the 20 Natural Amino Acids. Journal of Physical Chemistry A. 2014; 118(36): 7876-7891. eScholarID:252522 | DOI:10.1021/jp503460m
Yuan Y, Mills M, Popelier P. Multipolar Electrostatics for Proteins: Atom-Atom Electrostatic Energies in Crambin. Journal of Computational Chemistry. 2014; 35(5): 343-359. eScholarID:252526 | DOI:10.1002/jcc.23469
Yuan Y, Mills M, La Popelier P. Multipolar electrostatics based on the Kriging machine learning method: an application to serine. Journal of Molecular Modeling. 2014; 20(4): eScholarID:252520 | DOI:2172 10.1007/s00894-014-2172-1
Zielinski F, Popelier P. Spherical tensor multipolar electrostatics and smooth particle mesh Ewald summation: a theoretical study. Journal of Molecular Modeling. 2014; 20(7): eScholarID:252529 | DOI:2256 10.1007/s00894-014-2256-y