当前位置: X-MOL首页全球导师 国内导师 › 杨斌堂

个人简介

教育背景 2001-2005; 2000-2005法国贡比涅技术大学 机械学、 西北工业大学 航空宇航制造工程 博士 1996-1999西北工业大学 自动控制工程系系统工程专业硕士 1987-1991西北工业大学 飞行器制造工程系机制工艺专业学士 工作经历 1991—2006 西北工业大学 助教 讲师 副教授 1996—1997 马里兰大学 访问学者 2005—2006 法国贡比涅技术大学/国家科学技术研究中心(CNRS)Roberval实验室博士后 2007—2012 上海交通大学 机动学院 机械系统与振动国家重点实验室 振动冲击与噪声研究所 副教授 2012— 上海交通大学 机动学院 机械系统与振动国家重点实验室 振动冲击与噪声研究所 教授 科研项目 2022-2025 国家自然科学基金项目《自传感超精密智能材料驱动器设计与机床应用验证研究》(No. 52173239);负责人 2018-2021 国家自然科学基金项目《科里奥利力-磁-电传感新机理与天文望远镜拼接镜面超精密转角检测研究》(No. 51775349);负责人 2017-2019 科技重大专项子课题《用于航空航天大型曲面薄壁件加工的蒙皮镜像铣床动力学研究》;主要参与人; 2017-2018 航天先进技术联合研究中心项目《微振动隔振装置长期微动磨损分析与评估研究》(No. USCAST2016-13);负责人 2017-2021 国家重点研发计划《极端环境下精密机构综合性能测试仪》(2017YFF0108001);负责人 2016-2017 青海光伏发电并网技术重点实验室2016开放课题《基于吸振技术的太阳能热发电设备定日镜风致振动研究与抑制》(52280715001F);负责人 2015-2017 上海航天基金联合实验室基金《超宽频复合磁能直驱力控振动测试平台》(USCAST2015-5);负责人 2015-2017 上海航天基金《基于智能材料的薄膜光学形面精度主动控制技术》(USCAST2015-5);负责人 2014-2015 航天八院805所预研基金《空间六自由度微振动隔振方案研究》;负责人 2013-2017 民用飞机专项科研《长寿命高可靠机载光机电惯性器件关键制造技术》(MJZ-G-2013-03);负责人 2012-2014 上海航天基金联合实验室基金《基于智能材料的振动自适应控制研究》(USCAST2012-2);负责人 2012-2015 国家自然科学基金项目《微纳米扰振动控制和测试平台》(No.11172169);负责人 2011-2015 原总装备部《转动部件激励下卫星高精度微振动控制技术》(51334050201);交大负责人 2008-2011 上海浦江人才计划《微型重载巨磁致伸缩直线电机》项目;负责人 2008-2013 航天基金项目负责人和主要完成人项目各一项; 2008-2010 机械系统与振动国家重点实验室基金《基于永磁磁致伸缩机理的微小型振动研磨机械的研究》重点基金《微纳米振动台研究》各一项;负责人 2008-2010 教育部留学回国启动基金项目一项;负责人 2008-2009 国家“973”项目《复杂管系故障诊断和智能治愈》项目(课题编号:2008CB617505,已完成)一项;主要完成人 2007-2009 国家自然科学基金《磁致伸缩微位移驱动在天文望远镜中的应用研究》(No. 10778620);负责人  2007- 十一五预研项目《新型主动隔振器研究》(项目号:51310050202);参加人 2001-2005 法国国家研究中心(CNRS)Roberval实验室微型工厂微小高效驱动器研究子课题;主要完成人; 2005-2006 法国政府资助博士后研究项目“超高精度磁致伸缩驱动器结构设计及在航空航天领域应用性研究”,主要完成人; 2002-2004 中国国家高技术研究发展计划(863计划)机器人主题“大行程磁致伸缩驱动器”项目(No.2002AA423210); 项目组副组长,主要完成人。 教学工作 1、课程名称: 智能材料结构系统及应用 授课对象:本科生 学时数:32 学分:2 2、课程名称: 智能材料与微小机械精密驱动技术 授课对象:本科生 学时数:48 学分:3 3、课程名称: 研究生专业英语 授课对象:硕士研究生 学时数:36 学分:2 4. 振动学科前沿课 (与其他老师合上) 授课对象:硕士研究生 学时数:36 学分:2 5. 振动理论最新进展 (与其他老师合上) 授课对象:博士研究生 学时数:36 学分:2 6. 机动学院试点班15班班主任 软件版权登记及专利 [1] 发明 低频双轴振动台 CN202110332848.4 [2] 发明 高频非接触式双轴振动台 CN202110332843.1 [3] 发明 着陆缓冲系统落震试验装置及方法 CN202110291248.8 [4] 发明 基于流体驱动的水下简易运动装置 CN202010400299.5 [5] 发明 针对梁结构的主动振动噪声控制机构与方法 CN202010375974.3 [6] 发明 基于非刚性连接的刚性力控制装置 CN201911348037.2 [7] 发明 摩擦阻尼与驱动限位执行器 CN201910635788.6 [8] 发明 基于永磁驱动的曲面薄壁件振动控制装置 CN201910590127.6. [9] 发明 零件在线检测及数据处理平台以及方法 CN201910497222.1 [10] 发明 摩擦阻尼与驱动限位执行器 CN201910635788.6 [11] 发明 基于永磁驱动的曲面薄壁件振动控制装置 CN201910590127.6 [12] 发明 零件在线检测及数据处理平台以及方法 CN201910497222.1 [13] 发明 多模态吸隔振系统与平台 CN201910185758.X [14] 发明 吸振发电系统 CN201811426597.0 [15] 发明 基于磁致伸缩材料的自传感驱动器 CN201811204066.7 [16] 发明 动力吸振器与吸振器群系统 CN201810814612.2 [17] 发明 张紧平台与薄膜光学形面张紧平台组合装置 CN201810529999.7 [18] 发明 多维动作加工机器人与集群 CN202010724421.4 [19] 发明 转动和平动作动器及其组合装置 CN201711365684.5 [20] 发明 多自由度的工件表面柔性加工装置及方法 CN201711218589.2 [21] 发明 多自由度自传感精密指向隔振一体化平台及组合装置 CN201710899963.3 [22] 发明 电流驱动的电磁执行器控制系统 CN201610757473.5 [23] 发明 力平衡状态下的物体及其振动控制与姿态调整方法 CN201610615344.2 [24] 发明 基于风机叶片涡流发生器主动控制的电磁驱动装置 CN201610510582.7 [25] 发明 共轭等径凸轮型复合磁能往复摆振动台及驱动部件与方法 CN201610423162.5 [26] 发明 变刚度变阻尼可调谐动力吸振器 CN201610396736.4 [27] 发明 频率分辨率可调谐动力吸振器 CN201610398287.7 [28] 发明 预压式变刚度精密可调谐动力吸振器 CN201610396721.8 [29] 发明 惯性力驱动可调谐动力吸振器 CN201610398297.0 [30] 发明 磁粒子驱动吸振系统 CN201610298250.7 [31] 发明 泵阀一体流量主动控制装置及控制方法 CN201610177822.6 [32] 发明 电磁自适应箝位夹紧装置及组合式箝位夹紧装置 CN201610038564.3 [33] 发明 基于磁激励的运动粒子吸振单元及组合装置与方法 CN201610038190.5 [34] 发明 磁力凸轮驱动单元及振动台装置和直线驱动装置 CN201511026780.8 [35] 发明 紧固件预紧力在线检测方法及系统 CN201510750036.6 [36] 发明 自驱动转动轴的振动及局部位置稳定系统 CN201510494392.6 [37] 发明 磁致伸缩驱动主被动一体多自由度精密隔振装置 CN201510253823.X [38] 发明 智能自适应吸振器、阵列整合装置及其应用 CN201510216054.6 [39] 发明 精密可控直线驱动装置及其组合 CN201510158431.5 [40] 发明 加工机床及其基于磁致伸缩的精密进给驱动装置 CN201410855279.1 [41] 发明 基于科里奥利力效应的微型传感装置及其组合结构 CN201410784796.4 [42] 发明 基于电磁‑永磁驱动的超精密驱动装置 CN201410756698.X [43] 发明 基于转子廓型和磁场耦合的电‑永磁转子系统设计方法 CN201410461151.7 [44] 发明 自传感驱动材料体及驱动传感装置 CN201410203720.8 [45] 发明 电磁致驱动定位控制方法及其应用 CN201410178050.9 [46] 发明 精密可控滑台装置及其组合 CN201410143335.9 [47] 发明 磁电式科里奥利力检测传感器 CN201410095933.3 [48] 发明 基于永磁体和电磁体相互作用的位移驱动装置 CN201610778656.5 [49] 发明 基于位移驱动装置组合而成的多轴工作运动平台 CN201610786316.7 [50] 发明 基于磁性体和电磁体相互作用的柔性驱动装置及其组合 CN201210395508.7 [51] 发明 基于永磁体和电磁体相互作用的位移驱动装置 CN201610778628.3 [52] 发明 基于电磁能和永磁能复合能量的摆动驱动装置 CN201210395512.3 [53] 发明 基于永磁体和电磁体相互作用的位移驱动装置 CN201210393968.6 [54] 发明 基于换能装置的型腔表面处理加工装置 CN201210335229.1 [55] 发明 磁力控位移装置 CN201210039643.8 [56] 发明 内置传感装置大位移精密驱动机构 CN201110322948.5 [57] 发明 外置传感装置大位移精密驱动机构 CN201110322950.2 [58] 发明 精密驱动振动台 CN201110039211.2 [59] 发明 具有精密驱动机构的振动平台 CN201210217395.1 [60] 发明 力控型电磁永磁复合激励振动台 CN201110030610.2 [61] 发明 用于检测旋转机械运动状态的永磁旋转传感装置 CN201010604663.6 [62] 发明 基于电磁箝位机构的尺蠖运动直线电机 CN201010541650.9 [63] 发明 用于直线电机的电磁-永磁箝位机构 CN201010541563.3 [64] 发明 用于检测精密机构高精度转角和转矩的传感器 CN201010291475.2 [65] 发明 自驱动关节 CN201010290802.2 荣誉奖励 2008 上海市浦江计划人才 2012 上海交通大学优异学士学位论文(TOP1%)奖(指导教师) 2016 教育部技术发明一等奖(排名2) 2017 中国航天科技集团公司技术发明二等奖(排名5)

研究领域

超精密驱动理论与智能驱动技术 智能材料驱动器、传感器及其系统集成设计 精密电磁驱动系统集成设计 振动控制及振动装备、微振动主动控制方法及实现 智能材料器件数字化分析仿真及辅助优化设计研究 超精密加工制造系统、微小机器人、微型工厂研究

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

外文论文: Note: [C]- Conference Paper [J]-Journal Paper [1] Huang X., Yang B. Towards novel energy shunt inspired vibration suppression techniques: Principles, designs and applications[J]. Mechanical Systems and Signal Processing, 2023, 182:109496. [2] Xie D., Yang Y., Yang B. Self-sensing magnetostrictive actuator based on Δ e effect: Design, theoretical modeling and experiment[J]. Smart Materials and Structures, 2022, 31(5):055007. [3] Li Z., Wu H., Yang B. An Improved Network for Small Object Detection Based on YOLOv4-Tiny-3L[C]. Lecture Notes on Data Engineering and Communications Technologies, 2022, 80:807-813. [4] Huang X., Yang B. Investigation on the energy trapping and conversion performances of a multi-stable vibration absorber[J]. Mechanical Systems and Signal Processing, 2021, 160:107938. [5] Huang X., Yang B. Improving energy harvesting from impulsive excitations by a nonlinear tunable bistable energy harvester[J]. Mechanical Systems and Signal Processing, 2021, 158:107797. [6] Huang X., Wang W., Ding L., Yang B. Investigating the lubrication mechanism and stiffness of oil-based ferrofluids in spur gear drives[J]. Physics of Fluids, 2021, 33:043103. [7] Huang X., Yang B., Wang Y. Influences of transient impact and vibration on the lubrication performance of spur gears[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235(2):274–289. [8] Yang Y., Wu H., Yang B. Self-sensing Nanometric Magnetoelectric Actuator Based on Metglas/PZT Composites[C]. ACTUATOR 2021 International Conference and Exhibition on New Actuator Systems and Applications. Online, February 17-19, 2021. [9] Yang Y., Yang B. Equivalent circuit method based on complete magneto-mechanical coupling magnetostriction parameters for fixed magnetoelectric composites[J]. International Journal of Mechanical Sciences, 2021, 199:106411. [10] Yang Y., Yang B. Displacement Sensor with Nanometric Resolution Based on Magnetoelectric Effect[J]. IEEE Sensors Journal, 2021, 21(10):12084-12091. [11] Liu L., Yang Y., Yang B., Non-contact and high-precision displacement measurement based on tunnel magnetoresistance[J]. Measurement Science and Technology, 2020, 31(6):065102. [12] Wang X., Wu H., Yang B., Micro-vibration suppressing using electromagnetic absorber and magnetostrictive isolator combined platform[J]. Mechanical Systems and Signal Processing, 2020, 139:106606. [13] Liu L., Yang Y., Yang B., A resonant pressure sensor based on magnetostrictive/ piezoelectric magnetoelectric effect[C]. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020, 825:012037. [14] Wang X., Wu H., Yang B., Nonlinear multi-modal energy harvester and vibration absorber using magnetic softening spring[J]. Journal of Sound and Vibration, 2020, 476:115332. [15] Niu M., Yang B., Yang Y., Modelling and parameter design of a 3-DOF compliant platform driven by magnetostrictive actuators[J]. Precision Engineering, 2020, 66:255-268. [16] Sun X., Yang B., Gao Y., Integrated design, fabrication, and experimental study of a parallel micro-nano positioning-vibration isolation stage[J]. Robotics and Computer-Integrated Manufacturing, 2020, 66:101988. [17] Sun X, Yang B., Hu W. Simultaneous Precision Positioning and Vibration Control for on-Orbit Optical Payloads: An Integrated Actuator Development and Analysis[J]. Journal of Vibration Engineering & Technologies, 2020:1-22. [18] Huang X., Yang B., Wang Y., Zhou C. Influences of impulse excitation and vibration on thermoelastohydrodynamic characteristics of spur gear drive[J]. Lubrication Science, 2020, 32(6):292–308. [19] Hu W., Gao Y., Sun X., Yang Y., Yang B. Semi-active vibration control of a rotating flexible plate using stiffness and damping actively tunable joint[J]. Journal of Vibration and Control, 2019, 25(21-22):2819–2833. [20] Hu W., Gao Y., Yang B. Semi-active vibration control of two flexible plates using an innovative joint mechanism[J]. Mechanical Systems and Signal Processing, 2019, 130:565–584. [21] Huang X., Yang B., Wang Y. A nano-lubrication solution for high-speed heavy-loaded spur gears and stiffness modelling[J]. Applied Mathematical Modelling, 2019, 72:623–649. [22] Yi S., Yang B., Meng G. Ill-conditioned dynamic hysteresis compensation for a low-frequency magnetostrictive vibration shaker[J]. Nonlinear Dynamics, 2019, 96(1):535–551. [23] Wang X., Yang B. Transient vibration control using nonlinear convergence active vibration absorber for impulse excitation[J]. Mechanical Systems and Signal Processing, 2019, 117:425-436. [24] Yi S., Yang B., Meng G. Microvibration isolation by adaptive feedforward control with asymmetric hysteresis compensation[J]. Mechanical Systems and Signal Processing, 2019, 114:644-657. [25] Hu W., He Q., Sun X., Yang B. Design of an innovative active hinge for Self-deploying/folding and vibration control of solar panels[J]. Sensors and Actuators A: Physical, 2018, 281:196-208. [26] Yang Y., Yang B., Niu M. Adaptive trajectory tracking of magnetostrictive actuator based on preliminary hysteresis compensation and further adaptive filter controller[J]. Nonlinear Dynamics, 2018, 92(9):1109-1118. [27] Yang Y., Niu M., Yang B. Static nonlinear model of both ends clamped magnetoelectric heterostructures with fully magneto-mechanical coupling[J]. Composite Structures, 2018, 201:625-635. [28] Yang Y., Yang B., Niu M. Dynamic/static displacement sensor based on magnetoelectric composites[J]. Applied Physics Letters, 2018, 113(3):032903. [29] Sun X., Yi S., Wang Z., Yang B. A new bi-directional giant magnetostrictive-driven compliant tensioning stage oriented for maintenance of the surface shape precision[J]. Mechanism & Machine Theory, 2018, 126:359-376. [30] Niu M., Yang B., Yang Y., et al. Two generalized models for planar compliant mechanisms based on tree structure method[J]. Precision Engineering, 2018, 51:137-144. [31] Yang Y., Yang B., Niu M. Adaptive infinite impulse response system identification using opposition based hybrid coral reefs optimization algorithm[J]. Applied Intelligence, 2018, 48(7):1689-1706. [32] Yi S., Yang B., Meng G. Improved Adaptive Filter-Based Control of a Magnetostrictive Vibration Isolator[C]. The 37th Chinese Control Conference, Wuhan, China, July 25-27, 2018. [33] Yang Y., Yang B., Niu M. Hybrid Frequency-dependent Hysteresis Model of Magnetostrictive Actuator[C]. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018, 378(1): 012013. [34] Wang X., Yang B., Guo S., et al. Nonlinear convergence active vibration absorber for single and multiple frequency vibration control[J]. Journal of Sound and Vibration, 2017, 411:289-303. [35] Wang X., Yang B., Yu H. Optimal Design and Experimental Study of a Multidynamic Vibration Absorber for Multifrequency Excitation[J]. Journal of Vibration and Acoustics, 2017, 139(3):031011. [36] Sun X., Yang B. A new methodology for developing flexure-hinged displacement amplifiers with micro-vibration suppression for a giant magnetostrictive micro drive system[J]. Sensors and Actuators A: Physical, 2017, 263:30-43. [37] Sun X., Yang Y., Hu W., Yang B. Optimal design and experimental performances of an integrated linear actuator with large displacement and high resolution[J]. Microsystem Technologies, 2017, 23(10):1-11. [38] Sun X., Yang B., Guo S. Design and analysis of a novel tensioning stage driven by a giant magnetostrictive actuator[C]. The 5th International Conference on Mechanical, Automotive and Materials Engineering, Guangzhou, China, August 1-3, 2017. [39] Niu M., Yang B., Yang Y., et al. Dynamic modelling of magnetostrictive actuator with fully coupled magneto-mechanical effects and various eddy-current losses[J]. Sensors & Actuators A: Physical, 2017, 258:163-173. [40] Niu M., Yang B., Yang Y., et al. Modeling and optimization of magnetostrictive actuator amplified by compliant mechanism[J]. Smart Materials and Structures, 2017, 26(9):095029. [41] Yi S., Yang B., Niu M., etc. Micropositioning Control for an Amplified Magnetostrictive-Actuated Device[C]. The 5th International Conference on Mechanical, Automotive and Materials Engineering, Guangzhou, China, August 1-3, 2017. [42] Hu W., He Q., Yang B., Guo S., Zhao W., Zhang J. Design of a Novel Active Joint Mechanism for Solar Panels[C]. The 5th International Conference on Mechanical, Automotive and Materials Engineering, Guangzhou, China, August 1-3, 2017. [43] Yu H., Yang B., Sun X., Wang X., Mo H. Effects of Tunable Angle for Vortex Generators on Aerodynamic Performances of Airfoils[C]. The 2nd International Conference on Applied Engineering, Materials and Mechanics, Tianjin, China, April 14-16, 2017. [44] Cao F., Niu M., Yang Y., Xie B., Yang B. Modeling of the electromagnetic torque on the permanent magnet in a novel drive mechanism[C]. The 2nd International Conference on Applied Engineering, Materials and Mechanics, Tianjin, China, April 14-16, 2017. [45] Cao F., Yang B., Niu M., Xie B., Hu W. Electrical-magnetic-mechanical modeling of a novel vibration shaker based on a rotary permanent magnet[C]. The 5th International Conference on Mechanical, Automotive and Materials Engineering, Guangzhou, China, August 1-3, 2017. [46] Yang Y., Yang B., Niu M. Parameter identification of Jiles–Atherton model for magnetostrictive actuator using hybrid niching coral reefs optimization algorithm[J]. Sensors and Actuators A: Physical, 2017, 261:184-195. [47] Yang Y., Yang B., Niu M. Spline adaptive filter with fractional-order adaptive strategy for nonlinear model identification of magnetostrictive actuator[J]. Nonlinear Dynamics, 2017, 90(3):1647-1659. [48] Wang X., Yang B., Yu H., Gao Y. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation[J]. Journal of Sound and Vibration, 2017, 394:90-108. [49] Wang X., Yang B., Zhu Y. Adaptive model-based feedforward to compensate Lorentz force variation of voice coil motor for the fine stage of lithographic equipment[J]. Optik, 2017, 135:27-35. [50] Wang X., Yang B., You J., Gao Z. Coarse-fine adaptive tuned vibration absorber with high frequency resolution[J]. Journal of Sound and Vibration, 2016, 383:46-63. [51] Wang X., Yang B., Zhu Y. Modeling and analysis of a novel rectangular voice coil motor for the 6-DOF fine stage of lithographic equipment[J]. Optik, 2016, 127(4):2246-2250. [52] Wang X., Yang B., Zhu Y. Optimization of current distribution coefficients to decouple the 6-DOF fine stage of lithographic equipment[J]. Optik, 2016, 127(20):9896-9904. [53] Wang X., Yang B. Adaptive dynamic absorber for wideband micro-vibration control based on precision self-positioning linear actuator[C]. The 15th International Conference on New Actuators, Bremen, Germany, June 1-4, 2016. [54] Wang X., Yang B., Yu H. Optimal design and experimental study of a multi-dynamic vibration absorber for multi-frequency excitation[J], Journal of Vibration and Acoustics, 2017, 139(3):031011. [55] Sun X., Yang B., Zhao L., Sun X. Optimal design and experimental analyses of a new micro-vibration control payload-platform[J]. Journal of Sound and Vibration, 2016, 374:43-60. [56] Yang B., Yang Y. A new angular velocity sensor with ultrahigh resolution using magnetoelectric effect under the principle of Coriolis force[J]. Sensors and Actuators A: Physical, 2016, 238:234-239. [57] Niu M., Yang B., Meng G. Design and modelling of a sensor-integrated actuator using combined effects of magnetostriction and piezoelectricity[C]. The 15th International Conference on New Actuators, Bremen, Germany, June 1-4, 2016. [58] He Q., Yang B. Design and optimization of a new type of active hinge[C]. The 2nd International Conference on Mechanical, Electronic and Information Technology Engineering, Chongqing, China, May 21-22, 2016. [59] Sun X., Guo Q., Yang B. Study and simulation of a vibration-isolation system for the large precision optical load on the Chinese space station[C]. The 7th International Conference on Vibration Engineering, Shanghai, September 18-20, 2015. [60] Niu M., Yang B., Meng G. Design and modelling of a 3-DOF hybrid micro-vibration isolator[C]. The 7th International Conference on Vibration Engineering, Shanghai, China, September 18-20, 2015. [61] Yang B., Zhang T., Li J., Li F., Li H., Meng G. Research on Giant Magnetostrictive Actuator for Low Frequency Adaptive Vibration Control[J]. Advances in Vibration Engineering, 2013, 12(6):611-622. [62] Deng K., Yang B. The adaptive feedback control with dynamic feed-forward compensation of the giant magnetostrictive actuator[J]. Applied Mechanics and Materials, 2014, 654:208-211. [63] Cai P., Yang B. Design and research of smart blades based on load optimization and power control[J]. Applied Mechanics and Materials, 2014, 654:229-232. [64] Zhang T., Yang B., Li H., Meng G. Dynamic Modeling and Adaptive Control of a Giant Magnetostrictive Actuator for Vibration Control[J]. Sensors and Actuators A: Physical, 2013, 190:96-105. [65] Peng Z., Zhang W., Yang B., MENG G., Chu F. The parametric characteristic of bispectrum for nonlinear systems subjected to Gaussian input[J]. Mechanical Systems and Signal Processing, 2013, 36(2):456-470. [66] Yang B., Che T., Meng G., Feng Z., Jiang J., Zhang S., Zhou Q. Design of a safety escape device based on magnetorheological fluid and permanent magnet[J]. Journal of intelligent material systems and structures, 2013, 24(1):49-60. [67] Yang B., Liu Q., Zhang T., Cao Y. Feng Z., Meng G. Non-contact translation-rotation sensor using combined effects of magnetostriction and piezoelectricity[J]. Sensors, 2012, 12(10):13829-13841. [68] Yang B., Yang D., Xu P., Cao Y., Feng Z., Meng G. Large stroke and nanometer-resolution giant magnetostrictive assembled actuator for driving segmented mirrors in very large astronomical telescopes[J]. Sensors and Actuators A: Physical, 2012, 179:193-203. [69] Cao Y., Yang B. Non-linear modelling of multilayer piezoelectric actuators in non-trivial configurations based on actuator design parameters and piezoelectric material properties[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(8):875-884. [70] Wang Q., Yang B., Liu L., et al. Design and Modeling of a New Inchworm Linear Motor[J]. Advanced Materials Research, 2012, 562:603-606. [71] Liu L., Yang B., Wang Q., Meng G. Modeling and Simulation of a Novel Drive Joint Based on Permanent Magnet and Electromagnet[C]. Materials Engineering and Automatic Control, Jinan, China, April 27-29, 2012. [72] Liu L., Yang B., Wang Q., Li L., Meng G. Design of A New Type of Drive Joint for Rehabilitation Robots[C]. The 6th International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, May 17-20, 2012. [73] Yang B., Wang Q., Bonis M., Zhang Z., Meng G., Sun X., Feng Z., Yang D. Development of a novel electromagnetic-driven low frequency and heavy load vibration table with a rotary permanent magnet[C]. The 13th International Conference on New Actuators, Bremen, Germany, June 16-19, 2012. [74] Wang Q., Yang B., Liu L., Meng G. Design and Modeling of a New Inchworm Linear Motor [J]. Advanced Materials Research, 2012, 562-564:603-606. [75] Yang B., Zhang T., Li J., Li F., Li H., Meng G. Research on Giant Magnetostrictive Actuator for Low Frequency Adaptive Vibration Control[C]. The 7th International Conference on Vibration Engineering and Technology of Machinery, Shanghai, China, November 21-24, 2012. [76] Yang B., Lu Y., Meng G., Feng Z. Numerical and experimental study of a vibration driver due to electromagnetic forces on a rotary permanent magnet[J]. Sensors and Actuators A: Physical, 2011, 172(2):491-496. [77] Yang B., Meng G., Feng Z., Yang D. Giant magnetostrictive clamping mechanism for heavy-load and precise positioning linear inchworm motors[J]. Mechatronics, 2011, 21(1):92-99. [78] Pan P., Yang B., Meng G., Design and Simulation of a mini precision positioning magnetostrictive inchworm linear motor[J]. Applied Mechanics and Materials. 2011, 130-134:2846-2850. [79] Li J., Yang B., Meng G., Dynamic Modeling and Simulation of 3-d.o.f. Vibration Active Isolation Platform Based on Giant Magnetostrictive Actuators[J]. Applied Mechanics and Materials. 2011, 130-134:2719-2723. [80] Xu W., Yang B., Meng G., Lu Y. Dynamic Modeling and Simulation to Precision Positioning Magnetostrictive Inchworm Linear Motor[C]. The 2nd Asian Conference on Mechanics of Functional Materials and Structures, Nanjing, China, 2010. [81] Yang B., Meng G., Feng Z., Yang D., Xu W., Lu Y. Heavy Load and Nano-Metric Positioning Magnetostrictive Inchworm Linear Motor[C]. The 12th International Conference on New Actuators, Bremen, Germany, June 13-16, 2010. [82] Feng Z., Yang B., Cros J., Renaud C. Dynamics of shell structures with contact interfaces[C]. The 4th European Conference on Computational Mechanics, Paris, France, May 16-21, 2010. [83] Renaud C., Feng Z., Cros J., Yang B. The Yeoh model applied to the modeling of large deformation contact/impact problems[J]. International Journal of Impact Engineering, 2009, 36:659-666. [84] Yang B., Meng G., Yang D., Feng Z., Xu P., Tan X. Magnetostrictive blocked-force mechanism for secure and heavy-load inchworm motion[C]. The ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Oxnard, California, USA, September 20-24, 2009. [85] Shao L., Yang D., Yang B., Chen K. Design and Test of a Micro-displacement Actuator Based on Giant Magnetostrictive Material[C]. The 2nd International Conference on Smart Materials and Nanotechnology in Engineering, Proc. of SPIE, 2007. [86] Yang B., Yang D., Meng G., Chen K., Qi Y., Zhou H., Hou P. Application study on giant-magneostrictive actuator for driving segmented mirrors of very large astronomical telescope[C]. The international conference on Smart Materials and Nanotechnology in Engineering, Proc. of SPIE, 2007. [87] Yang B., Bonis M., Tao H., Prelle C., Lamarque F. Magnetostrictive mini actuator for long-stroke positioning with nanometer resolution[J]. Journal of Micromechanics and Microengineering, 2006, 16(7):1227-1232. [88] Qiu H., Tao H., Yang B., Gao X. Study on formalizable aircraft assembly process planning knowledge[J]. Materials Science Forum, 2006, 532-533:640-643. [89] YANG B., BONIS M. An approach of optimum design of an inchworm magnetostrictive mini-actuator[C]. The 1st International Conference of Micromanufacturing, University of Illinois, Urbana-Champaign, September 13-15, 2006. [90] YANG B., BONIS M. Experimental study on giant magnetostrictive material for mini-actuator design[C]. The 2nd International Conference on Smart Materials & Structures in Aerospace Engineering, Nanjing, China, September 24-26, 2006. [91] Yang B., Bonis M., Tao H., Prelle C. Lamarque F. Modeling and simulation study for a mini actuator using a giant magnetostrictive material[C]. The 5th euspen international conference, Montpellier, France, May 8-11, 2005. [92] Yang B., Bonis M., Tao H., Prelle C. Design approach of a magnetostrictive actuator[C]. The 4th euspen international conference, Glasgow, Scotland (UK), May 31-June 2, 2004. [93] Yang B., Prelle C., Lamarque F., Bonis M., Tao H. Development of a Mini-actuator Based on Giant Magnetostrictive Materials[C]. The 4th International Workshop on Microfactories, Shanghai, China, October 15-17, 2004. 中文论文: [1] 崔磊,黄兴保,杨斌堂. 水下仿生贝壳电磁驱动器动力学分析[J]. 噪声与振动控制, 2022, 42(5):1-7. [2] 吴浩慜, 杨斌堂, 邵济明, 卢健, 王熙. 离散支承梁分段动力学建模方法[J]. 噪声与振动控制, 2021, 41(6):12-18. [3] 孙小庆,杨斌堂,柏转,忽伟.空间敏感载荷用超精密驱动系统刚柔耦合振动分析[J].振动与冲击,2021,40(17):99-105. [4] 易思成,王金海,刘志刚,张泉,杨斌堂,孟光.微振动主动隔振系统的研究综述[J].机电工程,2021,38(03):265-275. [5] 张博, 王熙, 吴浩慜. 杨斌堂,面向船舶振动抑制的电磁吸振器优化设计[J]. 噪声与振动控制, 2020, 40(4):213-218. [6] 张茂胜, 杨斌堂. 振动磁力研磨机理及多型面加工[J]. 噪声与振动控制, 2020, 40(3):50-56+72. [7] 牛牧青, 杨斌堂, 杨诣坤, 孟光, 陈立群. 磁致伸缩主被动隔振装置中的磁机耦合效应研究[J]. 力学学报, 2019, 51(2):324-332. [8] 莫杭杰,杨斌堂,喻虎,曹逢雨. 超磁致伸缩微振动电驱系统设计与实现[J]. 噪声与振动控制,2017,37(2):33-37. [9] 何泉,刘澜涛,杨斌堂. 基于主动关节机构的航天扰性结构的振动控制[J]. 上海交通大学学报,2016,50(12):36-42. [10] 孙晓芬,杨斌堂,赵龙. 巨磁致伸缩自适应精密驱动和振动控制[J]. 噪声与振动控制,2014, 34(5):16-21. [11] 赵龙,杨斌堂,孙晓芬. 微振动主动隔振平台的超磁致伸缩驱动器设计[J]. 噪声与振动控制, 2014, 34(5):203-209. [12] 杨斌堂,赵寅,彭志科,孟光. 基于Prandtl-Ishlinskii模型的超磁致伸缩驱动器实时磁滞补偿控制[J]. 光学精密工程, 2013, 21(1):124-130. [13] 赵寅,杨斌堂,彭志科,孟光. 超磁致伸缩驱动器自适应精密驱动控制研究[J]. 噪声与振动控制, 2013, 33(6):1-4. [14] 杨斌堂,徐彭有,孟光,杨德华,许文秉,谭先涛. 大行程精密定位超磁致伸缩驱动器的设计与控制[J]. 机械工程学报,2012, 48(1):25-31. [15] 许文秉,杨斌堂,孟光,吕扬名. 大负载精密驱动超磁致伸缩直线电机动力学建模与仿真. 上海交通大学学报,2012, 46(3):480-486. [16] 吕扬名,杨斌堂,孟光,许文秉,夏明璐,钱文韬. 振动驱动的电磁-永磁复合驱动建模. 噪声与振动控制,2011, 31(5):17-21. [17] 徐彭有,杨斌堂,孟光. 天文望远镜子镜超磁致伸缩驱动器驱动模型及参数识别[J]. 天文研究与技术,2010, 7(2):150-157. [18] 谭先涛,杨斌堂,孟光. 超磁致伸缩驱动器二维轴对称非线性驱动位移模型及有限元分析[J]. 天文研究与技术,2010, 07(4):362-368. [19] 张梦良,戚永军,杨斌堂. 磁致伸缩微位移驱动器性能测试分析[J]. 天文研究与技术,2009, 6(4):342-346. [20] 邵亮,杨德华,陈昆新,杨斌堂. 光学天文望远镜用微位移驱动器机构研究综述[J]. 天文学进展,2009, 27(1):70-79. [21] 关文天,陶华,杨斌堂. 面向并行工程的产品特征模型多视域转换平台[J]. 计算机工程与应用,2005, 41(25):124-126. [22] 杨斌堂,陶华,C.Prelle.,M.Bonis. 磁致伸缩微小驱动器驱动电磁线圈的设计研究[J]. 机械科学与技术,2004, 23(8):982-984.

学术兼职

美国机械工程师协会 (ASME)会员 欧洲精密工程及纳米技术协会(EUSPEN) 会员 中国仪器仪表协会微纳米器件分会会员 中国机械工程学会高级会员 Mechanical Systems and Signal Processing,Journal of Sound and Vibration,Journal of Applied Physics, Scientific Report, Mechatronics, Smart Materials and Structures, Journal of Intelligent Material Systems and Structures, 《机械工程学报》《航空学报》《纳米技术与精密工程》《噪声与振动控制》等期刊评审人

推荐链接
down
wechat
bug