近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
外文论文: Note: [C]- Conference Paper [J]-Journal Paper
[1] Huang X., Yang B. Towards novel energy shunt inspired vibration suppression techniques: Principles, designs and applications[J]. Mechanical Systems and Signal Processing, 2023, 182:109496.
[2] Xie D., Yang Y., Yang B. Self-sensing magnetostrictive actuator based on Δ e effect: Design, theoretical modeling and experiment[J]. Smart Materials and Structures, 2022, 31(5):055007.
[3] Li Z., Wu H., Yang B. An Improved Network for Small Object Detection Based on YOLOv4-Tiny-3L[C]. Lecture Notes on Data Engineering and Communications Technologies, 2022, 80:807-813.
[4] Huang X., Yang B. Investigation on the energy trapping and conversion performances of a multi-stable vibration absorber[J]. Mechanical Systems and Signal Processing, 2021, 160:107938.
[5] Huang X., Yang B. Improving energy harvesting from impulsive excitations by a nonlinear tunable bistable energy harvester[J]. Mechanical Systems and Signal Processing, 2021, 158:107797.
[6] Huang X., Wang W., Ding L., Yang B. Investigating the lubrication mechanism and stiffness of oil-based ferrofluids in spur gear drives[J]. Physics of Fluids, 2021, 33:043103.
[7] Huang X., Yang B., Wang Y. Influences of transient impact and vibration on the lubrication performance of spur gears[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235(2):274–289.
[8] Yang Y., Wu H., Yang B. Self-sensing Nanometric Magnetoelectric Actuator Based on Metglas/PZT Composites[C]. ACTUATOR 2021 International Conference and Exhibition on New Actuator Systems and Applications. Online, February 17-19, 2021.
[9] Yang Y., Yang B. Equivalent circuit method based on complete magneto-mechanical coupling magnetostriction parameters for fixed magnetoelectric composites[J]. International Journal of Mechanical Sciences, 2021, 199:106411.
[10] Yang Y., Yang B. Displacement Sensor with Nanometric Resolution Based on Magnetoelectric Effect[J]. IEEE Sensors Journal, 2021, 21(10):12084-12091.
[11] Liu L., Yang Y., Yang B., Non-contact and high-precision displacement measurement based on tunnel magnetoresistance[J]. Measurement Science and Technology, 2020, 31(6):065102.
[12] Wang X., Wu H., Yang B., Micro-vibration suppressing using electromagnetic absorber and magnetostrictive isolator combined platform[J]. Mechanical Systems and Signal Processing, 2020, 139:106606.
[13] Liu L., Yang Y., Yang B., A resonant pressure sensor based on magnetostrictive/ piezoelectric magnetoelectric effect[C]. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2020, 825:012037.
[14] Wang X., Wu H., Yang B., Nonlinear multi-modal energy harvester and vibration absorber using magnetic softening spring[J]. Journal of Sound and Vibration, 2020, 476:115332.
[15] Niu M., Yang B., Yang Y., Modelling and parameter design of a 3-DOF compliant platform driven by magnetostrictive actuators[J]. Precision Engineering, 2020, 66:255-268.
[16] Sun X., Yang B., Gao Y., Integrated design, fabrication, and experimental study of a parallel micro-nano positioning-vibration isolation stage[J]. Robotics and Computer-Integrated Manufacturing, 2020, 66:101988.
[17] Sun X, Yang B., Hu W. Simultaneous Precision Positioning and Vibration Control for on-Orbit Optical Payloads: An Integrated Actuator Development and Analysis[J]. Journal of Vibration Engineering & Technologies, 2020:1-22.
[18] Huang X., Yang B., Wang Y., Zhou C. Influences of impulse excitation and vibration on thermoelastohydrodynamic characteristics of spur gear drive[J]. Lubrication Science, 2020, 32(6):292–308.
[19] Hu W., Gao Y., Sun X., Yang Y., Yang B. Semi-active vibration control of a rotating flexible plate using stiffness and damping actively tunable joint[J]. Journal of Vibration and Control, 2019, 25(21-22):2819–2833.
[20] Hu W., Gao Y., Yang B. Semi-active vibration control of two flexible plates using an innovative joint mechanism[J]. Mechanical Systems and Signal Processing, 2019, 130:565–584.
[21] Huang X., Yang B., Wang Y. A nano-lubrication solution for high-speed heavy-loaded spur gears and stiffness modelling[J]. Applied Mathematical Modelling, 2019, 72:623–649.
[22] Yi S., Yang B., Meng G. Ill-conditioned dynamic hysteresis compensation for a low-frequency magnetostrictive vibration shaker[J]. Nonlinear Dynamics, 2019, 96(1):535–551.
[23] Wang X., Yang B. Transient vibration control using nonlinear convergence active vibration absorber for impulse excitation[J]. Mechanical Systems and Signal Processing, 2019, 117:425-436.
[24] Yi S., Yang B., Meng G. Microvibration isolation by adaptive feedforward control with asymmetric hysteresis compensation[J]. Mechanical Systems and Signal Processing, 2019, 114:644-657.
[25] Hu W., He Q., Sun X., Yang B. Design of an innovative active hinge for Self-deploying/folding and vibration control of solar panels[J]. Sensors and Actuators A: Physical, 2018, 281:196-208.
[26] Yang Y., Yang B., Niu M. Adaptive trajectory tracking of magnetostrictive actuator based on preliminary hysteresis compensation and further adaptive filter controller[J]. Nonlinear Dynamics, 2018, 92(9):1109-1118.
[27] Yang Y., Niu M., Yang B. Static nonlinear model of both ends clamped magnetoelectric heterostructures with fully magneto-mechanical coupling[J]. Composite Structures, 2018, 201:625-635.
[28] Yang Y., Yang B., Niu M. Dynamic/static displacement sensor based on magnetoelectric composites[J]. Applied Physics Letters, 2018, 113(3):032903.
[29] Sun X., Yi S., Wang Z., Yang B. A new bi-directional giant magnetostrictive-driven compliant tensioning stage oriented for maintenance of the surface shape precision[J]. Mechanism & Machine Theory, 2018, 126:359-376.
[30] Niu M., Yang B., Yang Y., et al. Two generalized models for planar compliant mechanisms based on tree structure method[J]. Precision Engineering, 2018, 51:137-144.
[31] Yang Y., Yang B., Niu M. Adaptive infinite impulse response system identification using opposition based hybrid coral reefs optimization algorithm[J]. Applied Intelligence, 2018, 48(7):1689-1706.
[32] Yi S., Yang B., Meng G. Improved Adaptive Filter-Based Control of a Magnetostrictive Vibration Isolator[C]. The 37th Chinese Control Conference, Wuhan, China, July 25-27, 2018.
[33] Yang Y., Yang B., Niu M. Hybrid Frequency-dependent Hysteresis Model of Magnetostrictive Actuator[C]. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018, 378(1): 012013.
[34] Wang X., Yang B., Guo S., et al. Nonlinear convergence active vibration absorber for single and multiple frequency vibration control[J]. Journal of Sound and Vibration, 2017, 411:289-303.
[35] Wang X., Yang B., Yu H. Optimal Design and Experimental Study of a Multidynamic Vibration Absorber for Multifrequency Excitation[J]. Journal of Vibration and Acoustics, 2017, 139(3):031011.
[36] Sun X., Yang B. A new methodology for developing flexure-hinged displacement amplifiers with micro-vibration suppression for a giant magnetostrictive micro drive system[J]. Sensors and Actuators A: Physical, 2017, 263:30-43.
[37] Sun X., Yang Y., Hu W., Yang B. Optimal design and experimental performances of an integrated linear actuator with large displacement and high resolution[J]. Microsystem Technologies, 2017, 23(10):1-11.
[38] Sun X., Yang B., Guo S. Design and analysis of a novel tensioning stage driven by a giant magnetostrictive actuator[C]. The 5th International Conference on Mechanical, Automotive and Materials Engineering, Guangzhou, China, August 1-3, 2017.
[39] Niu M., Yang B., Yang Y., et al. Dynamic modelling of magnetostrictive actuator with fully coupled magneto-mechanical effects and various eddy-current losses[J]. Sensors & Actuators A: Physical, 2017, 258:163-173.
[40] Niu M., Yang B., Yang Y., et al. Modeling and optimization of magnetostrictive actuator amplified by compliant mechanism[J]. Smart Materials and Structures, 2017, 26(9):095029.
[41] Yi S., Yang B., Niu M., etc. Micropositioning Control for an Amplified Magnetostrictive-Actuated Device[C]. The 5th International Conference on Mechanical, Automotive and Materials Engineering, Guangzhou, China, August 1-3, 2017.
[42] Hu W., He Q., Yang B., Guo S., Zhao W., Zhang J. Design of a Novel Active Joint Mechanism for Solar Panels[C]. The 5th International Conference on Mechanical, Automotive and Materials Engineering, Guangzhou, China, August 1-3, 2017.
[43] Yu H., Yang B., Sun X., Wang X., Mo H. Effects of Tunable Angle for Vortex Generators on Aerodynamic Performances of Airfoils[C]. The 2nd International Conference on Applied Engineering, Materials and Mechanics, Tianjin, China, April 14-16, 2017.
[44] Cao F., Niu M., Yang Y., Xie B., Yang B. Modeling of the electromagnetic torque on the permanent magnet in a novel drive mechanism[C]. The 2nd International Conference on Applied Engineering, Materials and Mechanics, Tianjin, China, April 14-16, 2017.
[45] Cao F., Yang B., Niu M., Xie B., Hu W. Electrical-magnetic-mechanical modeling of a novel vibration shaker based on a rotary permanent magnet[C]. The 5th International Conference on Mechanical, Automotive and Materials Engineering, Guangzhou, China, August 1-3, 2017.
[46] Yang Y., Yang B., Niu M. Parameter identification of Jiles–Atherton model for magnetostrictive actuator using hybrid niching coral reefs optimization algorithm[J]. Sensors and Actuators A: Physical, 2017, 261:184-195.
[47] Yang Y., Yang B., Niu M. Spline adaptive filter with fractional-order adaptive strategy for nonlinear model identification of magnetostrictive actuator[J]. Nonlinear Dynamics, 2017, 90(3):1647-1659.
[48] Wang X., Yang B., Yu H., Gao Y. Transient vibration analytical modeling and suppressing for vibration absorber system under impulse excitation[J]. Journal of Sound and Vibration, 2017, 394:90-108.
[49] Wang X., Yang B., Zhu Y. Adaptive model-based feedforward to compensate Lorentz force variation of voice coil motor for the fine stage of lithographic equipment[J]. Optik, 2017, 135:27-35.
[50] Wang X., Yang B., You J., Gao Z. Coarse-fine adaptive tuned vibration absorber with high frequency resolution[J]. Journal of Sound and Vibration, 2016, 383:46-63.
[51] Wang X., Yang B., Zhu Y. Modeling and analysis of a novel rectangular voice coil motor for the 6-DOF fine stage of lithographic equipment[J]. Optik, 2016, 127(4):2246-2250.
[52] Wang X., Yang B., Zhu Y. Optimization of current distribution coefficients to decouple the 6-DOF fine stage of lithographic equipment[J]. Optik, 2016, 127(20):9896-9904.
[53] Wang X., Yang B. Adaptive dynamic absorber for wideband micro-vibration control based on precision self-positioning linear actuator[C]. The 15th International Conference on New Actuators, Bremen, Germany, June 1-4, 2016.
[54] Wang X., Yang B., Yu H. Optimal design and experimental study of a multi-dynamic vibration absorber for multi-frequency excitation[J], Journal of Vibration and Acoustics, 2017, 139(3):031011.
[55] Sun X., Yang B., Zhao L., Sun X. Optimal design and experimental analyses of a new micro-vibration control payload-platform[J]. Journal of Sound and Vibration, 2016, 374:43-60.
[56] Yang B., Yang Y. A new angular velocity sensor with ultrahigh resolution using magnetoelectric effect under the principle of Coriolis force[J]. Sensors and Actuators A: Physical, 2016, 238:234-239.
[57] Niu M., Yang B., Meng G. Design and modelling of a sensor-integrated actuator using combined effects of magnetostriction and piezoelectricity[C]. The 15th International Conference on New Actuators, Bremen, Germany, June 1-4, 2016.
[58] He Q., Yang B. Design and optimization of a new type of active hinge[C]. The 2nd International Conference on Mechanical, Electronic and Information Technology Engineering, Chongqing, China, May 21-22, 2016.
[59] Sun X., Guo Q., Yang B. Study and simulation of a vibration-isolation system for the large precision optical load on the Chinese space station[C]. The 7th International Conference on Vibration Engineering, Shanghai, September 18-20, 2015.
[60] Niu M., Yang B., Meng G. Design and modelling of a 3-DOF hybrid micro-vibration isolator[C]. The 7th International Conference on Vibration Engineering, Shanghai, China, September 18-20, 2015.
[61] Yang B., Zhang T., Li J., Li F., Li H., Meng G. Research on Giant Magnetostrictive Actuator for Low Frequency Adaptive Vibration Control[J]. Advances in Vibration Engineering, 2013, 12(6):611-622.
[62] Deng K., Yang B. The adaptive feedback control with dynamic feed-forward compensation of the giant magnetostrictive actuator[J]. Applied Mechanics and Materials, 2014, 654:208-211.
[63] Cai P., Yang B. Design and research of smart blades based on load optimization and power control[J]. Applied Mechanics and Materials, 2014, 654:229-232.
[64] Zhang T., Yang B., Li H., Meng G. Dynamic Modeling and Adaptive Control of a Giant Magnetostrictive Actuator for Vibration Control[J]. Sensors and Actuators A: Physical, 2013, 190:96-105.
[65] Peng Z., Zhang W., Yang B., MENG G., Chu F. The parametric characteristic of bispectrum for nonlinear systems subjected to Gaussian input[J]. Mechanical Systems and Signal Processing, 2013, 36(2):456-470.
[66] Yang B., Che T., Meng G., Feng Z., Jiang J., Zhang S., Zhou Q. Design of a safety escape device based on magnetorheological fluid and permanent magnet[J]. Journal of intelligent material systems and structures, 2013, 24(1):49-60.
[67] Yang B., Liu Q., Zhang T., Cao Y. Feng Z., Meng G. Non-contact translation-rotation sensor using combined effects of magnetostriction and piezoelectricity[J]. Sensors, 2012, 12(10):13829-13841.
[68] Yang B., Yang D., Xu P., Cao Y., Feng Z., Meng G. Large stroke and nanometer-resolution giant magnetostrictive assembled actuator for driving segmented mirrors in very large astronomical telescopes[J]. Sensors and Actuators A: Physical, 2012, 179:193-203.
[69] Cao Y., Yang B. Non-linear modelling of multilayer piezoelectric actuators in non-trivial configurations based on actuator design parameters and piezoelectric material properties[J]. Journal of Intelligent Material Systems and Structures, 2012, 23(8):875-884.
[70] Wang Q., Yang B., Liu L., et al. Design and Modeling of a New Inchworm Linear Motor[J]. Advanced Materials Research, 2012, 562:603-606.
[71] Liu L., Yang B., Wang Q., Meng G. Modeling and Simulation of a Novel Drive Joint Based on Permanent Magnet and Electromagnet[C]. Materials Engineering and Automatic Control, Jinan, China, April 27-29, 2012.
[72] Liu L., Yang B., Wang Q., Li L., Meng G. Design of A New Type of Drive Joint for Rehabilitation Robots[C]. The 6th International Conference on Bioinformatics and Biomedical Engineering, Shanghai, China, May 17-20, 2012.
[73] Yang B., Wang Q., Bonis M., Zhang Z., Meng G., Sun X., Feng Z., Yang D. Development of a novel electromagnetic-driven low frequency and heavy load vibration table with a rotary permanent magnet[C]. The 13th International Conference on New Actuators, Bremen, Germany, June 16-19, 2012.
[74] Wang Q., Yang B., Liu L., Meng G. Design and Modeling of a New Inchworm Linear Motor [J]. Advanced Materials Research, 2012, 562-564:603-606.
[75] Yang B., Zhang T., Li J., Li F., Li H., Meng G. Research on Giant Magnetostrictive Actuator for Low Frequency Adaptive Vibration Control[C]. The 7th International Conference on Vibration Engineering and Technology of Machinery, Shanghai, China, November 21-24, 2012.
[76] Yang B., Lu Y., Meng G., Feng Z. Numerical and experimental study of a vibration driver due to electromagnetic forces on a rotary permanent magnet[J]. Sensors and Actuators A: Physical, 2011, 172(2):491-496.
[77] Yang B., Meng G., Feng Z., Yang D. Giant magnetostrictive clamping mechanism for heavy-load and precise positioning linear inchworm motors[J]. Mechatronics, 2011, 21(1):92-99.
[78] Pan P., Yang B., Meng G., Design and Simulation of a mini precision positioning magnetostrictive inchworm linear motor[J]. Applied Mechanics and Materials. 2011, 130-134:2846-2850.
[79] Li J., Yang B., Meng G., Dynamic Modeling and Simulation of 3-d.o.f. Vibration Active Isolation Platform Based on Giant Magnetostrictive Actuators[J]. Applied Mechanics and Materials. 2011, 130-134:2719-2723.
[80] Xu W., Yang B., Meng G., Lu Y. Dynamic Modeling and Simulation to Precision Positioning Magnetostrictive Inchworm Linear Motor[C]. The 2nd Asian Conference on Mechanics of Functional Materials and Structures, Nanjing, China, 2010.
[81] Yang B., Meng G., Feng Z., Yang D., Xu W., Lu Y. Heavy Load and Nano-Metric Positioning Magnetostrictive Inchworm Linear Motor[C]. The 12th International Conference on New Actuators, Bremen, Germany, June 13-16, 2010.
[82] Feng Z., Yang B., Cros J., Renaud C. Dynamics of shell structures with contact interfaces[C]. The 4th European Conference on Computational Mechanics, Paris, France, May 16-21, 2010.
[83] Renaud C., Feng Z., Cros J., Yang B. The Yeoh model applied to the modeling of large deformation contact/impact problems[J]. International Journal of Impact Engineering, 2009, 36:659-666.
[84] Yang B., Meng G., Yang D., Feng Z., Xu P., Tan X. Magnetostrictive blocked-force mechanism for secure and heavy-load inchworm motion[C]. The ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Oxnard, California, USA, September 20-24, 2009.
[85] Shao L., Yang D., Yang B., Chen K. Design and Test of a Micro-displacement Actuator Based on Giant Magnetostrictive Material[C]. The 2nd International Conference on Smart Materials and Nanotechnology in Engineering, Proc. of SPIE, 2007.
[86] Yang B., Yang D., Meng G., Chen K., Qi Y., Zhou H., Hou P. Application study on giant-magneostrictive actuator for driving segmented mirrors of very large astronomical telescope[C]. The international conference on Smart Materials and Nanotechnology in Engineering, Proc. of SPIE, 2007.
[87] Yang B., Bonis M., Tao H., Prelle C., Lamarque F. Magnetostrictive mini actuator for long-stroke positioning with nanometer resolution[J]. Journal of Micromechanics and Microengineering, 2006, 16(7):1227-1232.
[88] Qiu H., Tao H., Yang B., Gao X. Study on formalizable aircraft assembly process planning knowledge[J]. Materials Science Forum, 2006, 532-533:640-643.
[89] YANG B., BONIS M. An approach of optimum design of an inchworm magnetostrictive mini-actuator[C]. The 1st International Conference of Micromanufacturing, University of Illinois, Urbana-Champaign, September 13-15, 2006.
[90] YANG B., BONIS M. Experimental study on giant magnetostrictive material for mini-actuator design[C]. The 2nd International Conference on Smart Materials & Structures in Aerospace Engineering, Nanjing, China, September 24-26, 2006.
[91] Yang B., Bonis M., Tao H., Prelle C. Lamarque F. Modeling and simulation study for a mini actuator using a giant magnetostrictive material[C]. The 5th euspen international conference, Montpellier, France, May 8-11, 2005.
[92] Yang B., Bonis M., Tao H., Prelle C. Design approach of a magnetostrictive actuator[C]. The 4th euspen international conference, Glasgow, Scotland (UK), May 31-June 2, 2004.
[93] Yang B., Prelle C., Lamarque F., Bonis M., Tao H. Development of a Mini-actuator Based on Giant Magnetostrictive Materials[C]. The 4th International Workshop on Microfactories, Shanghai, China, October 15-17, 2004.
中文论文:
[1] 崔磊,黄兴保,杨斌堂. 水下仿生贝壳电磁驱动器动力学分析[J]. 噪声与振动控制, 2022, 42(5):1-7.
[2] 吴浩慜, 杨斌堂, 邵济明, 卢健, 王熙. 离散支承梁分段动力学建模方法[J]. 噪声与振动控制, 2021, 41(6):12-18.
[3] 孙小庆,杨斌堂,柏转,忽伟.空间敏感载荷用超精密驱动系统刚柔耦合振动分析[J].振动与冲击,2021,40(17):99-105.
[4] 易思成,王金海,刘志刚,张泉,杨斌堂,孟光.微振动主动隔振系统的研究综述[J].机电工程,2021,38(03):265-275.
[5] 张博, 王熙, 吴浩慜. 杨斌堂,面向船舶振动抑制的电磁吸振器优化设计[J]. 噪声与振动控制, 2020, 40(4):213-218.
[6] 张茂胜, 杨斌堂. 振动磁力研磨机理及多型面加工[J]. 噪声与振动控制, 2020, 40(3):50-56+72.
[7] 牛牧青, 杨斌堂, 杨诣坤, 孟光, 陈立群. 磁致伸缩主被动隔振装置中的磁机耦合效应研究[J]. 力学学报, 2019, 51(2):324-332.
[8] 莫杭杰,杨斌堂,喻虎,曹逢雨. 超磁致伸缩微振动电驱系统设计与实现[J]. 噪声与振动控制,2017,37(2):33-37.
[9] 何泉,刘澜涛,杨斌堂. 基于主动关节机构的航天扰性结构的振动控制[J]. 上海交通大学学报,2016,50(12):36-42.
[10] 孙晓芬,杨斌堂,赵龙. 巨磁致伸缩自适应精密驱动和振动控制[J]. 噪声与振动控制,2014, 34(5):16-21.
[11] 赵龙,杨斌堂,孙晓芬. 微振动主动隔振平台的超磁致伸缩驱动器设计[J]. 噪声与振动控制, 2014, 34(5):203-209.
[12] 杨斌堂,赵寅,彭志科,孟光. 基于Prandtl-Ishlinskii模型的超磁致伸缩驱动器实时磁滞补偿控制[J]. 光学精密工程, 2013, 21(1):124-130.
[13] 赵寅,杨斌堂,彭志科,孟光. 超磁致伸缩驱动器自适应精密驱动控制研究[J]. 噪声与振动控制, 2013, 33(6):1-4.
[14] 杨斌堂,徐彭有,孟光,杨德华,许文秉,谭先涛. 大行程精密定位超磁致伸缩驱动器的设计与控制[J]. 机械工程学报,2012, 48(1):25-31.
[15] 许文秉,杨斌堂,孟光,吕扬名. 大负载精密驱动超磁致伸缩直线电机动力学建模与仿真. 上海交通大学学报,2012, 46(3):480-486.
[16] 吕扬名,杨斌堂,孟光,许文秉,夏明璐,钱文韬. 振动驱动的电磁-永磁复合驱动建模. 噪声与振动控制,2011, 31(5):17-21.
[17] 徐彭有,杨斌堂,孟光. 天文望远镜子镜超磁致伸缩驱动器驱动模型及参数识别[J]. 天文研究与技术,2010, 7(2):150-157.
[18] 谭先涛,杨斌堂,孟光. 超磁致伸缩驱动器二维轴对称非线性驱动位移模型及有限元分析[J]. 天文研究与技术,2010, 07(4):362-368.
[19] 张梦良,戚永军,杨斌堂. 磁致伸缩微位移驱动器性能测试分析[J]. 天文研究与技术,2009, 6(4):342-346.
[20] 邵亮,杨德华,陈昆新,杨斌堂. 光学天文望远镜用微位移驱动器机构研究综述[J]. 天文学进展,2009, 27(1):70-79.
[21] 关文天,陶华,杨斌堂. 面向并行工程的产品特征模型多视域转换平台[J]. 计算机工程与应用,2005, 41(25):124-126.
[22] 杨斌堂,陶华,C.Prelle.,M.Bonis. 磁致伸缩微小驱动器驱动电磁线圈的设计研究[J]. 机械科学与技术,2004, 23(8):982-984.