近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[91] Shoubo Dai, Yisheng Zheng, Jiawei Mao, Yegao Qu. Vibro-acoustic control of a programmable meta-shell with digital piezoelectric shunting. International Journal of Mechanical Sciences, 2023, 255, 108475.
[90] Hao Liu, Yegao Qu, Fangtao Xie, Guang Meng. Fluid-structure interaction analysis of nonlinear flapping dynamic behaviors of variable stiffness composite laminated plates in viscous flows. Composite Structures, 2023, 315, 116987
[89] J. Zhu, H. Gao, S. Dai, Y. Qu, G. Meng. A composite multilayer structure for low-frequency sound absorption with continuous broadband under high sound pressure excitations. International Journal of Mechanical Sciences, 2023, 247,108197
[88] Z Xiao, P Gao, X He, Y Qu, L Wu. Multifunctional acoustic metamaterials for air ventilation, broadband sound insulation and switchable transmission. Journal of Physics D: Applied Physics, 2023, 56 044006.
[87] Y. Zheng; B. Chen; S. Dai; Y. Qu; G. Meng. Emergence of negative-dispersion passbands below the ring frequency of a piezoelectric meta-shell. Journal of Sound and Vibration, 2023, 545,117447.
[86] Y. Li, Y. Qu, F. Xie, G. Meng. An arbitrary Lagrangian-Eulerian method for nonlinear structural-acoustic interaction of hyperelastic solid and compressible viscous fluid. Journal of Computational Physics, 2022, 471,111665.
[85] Guo, X., Zhu, Y., Qu, Y., Cao D. Design and experiment of an adaptive dynamic vibration absorber with smart leaf springs. Appl. Math. Mech.-Engl. Ed. 2022, 43, 1485–1502
[84] P. Gao, Y. Qu, J. Christensen. Non-Hermitian elastodynamics in gyro-odd continuum media. Communications Materials, 2022, 3 (1), 74.
[83] J. Zhu, Y. Qu, G.Meng. Nonlinear sound absorption of Helmholtz resonators with serrated necks under high-amplitude sound wave excitation. Journal of Sound and Vibration, 2022, 537, 117197
[82] H. Su, Y.Qu, G. Wang, Z. Peng. Investigation on two-phase flow-induced vibrations of piping structure with elbow. Applied Mathematics and Mechanics (English Edition), 2022, 43(11), 1657–1674.
[81] Mingzhou Gao, Qishuai Wang, Dezhi Xu, Yegao Qu, Guang Meng. Adaptive fault-tolerant flutter control based on dynamic output feedback. Journal of the Franklin Institute, 2022, doi: 10.1016/j.jfranklin.2022.10.003.
[80] H. Gao, B. Yang, Y. Qu, G. Meng. Structure Carrying Moving Subsystems with Distributed Viscoelastic Coupling: Part I-Modeling and Dynamics Response. Acta Mechanica, 2022, 233 (11), 4467-4485.
[79] H. Gao, B. Yang, Y. Qu, G. Meng. Structure Carrying Moving Subsystems with Distributed Viscoelastic Coupling: Part II-Parametric Resonance and Stability. Acta Mechanica, 2022, 233, 4193–4207.
[78] J. Li, Y. Qu; Y. Chen, H. Hua, J. Wu. Hydroelastic analysis of underwater rotating propellers based on different boundary conditions. Journal of Marine Science and Technology, 2022, 27 (3), 1163-1178.
[77] H. Gao, Y. Qu*, G. Meng. Topology optimization of 3D phononic crystals with generalized plane wave expansion method. Journal of Vibration and Acoustics, Transactions of the ASME, 2023,145 (1), 011002.
[76] Y. Zheng, W. Tian, N.K. X. Lee, Y. Qu*, G. Meng. A programmable macro-fiber-composite meta-ring with digital shunting circuits. Journal of Sound and Vibration, 2022, 533, 117017.
[75] H. Liu, Y. Qu*, F. Xie, G. Meng. Vortex-induced vibration of large deformable underwater composite beams based on a nonlinear higher-order shear deformation zig-zag theory. Ocean Engineering, 2022, 250, 111000.
[74] J. Li, Y. Qu*, Y. Chen, H. Hua, J. Wu. BEM-FEM coupling for the hydroelastic analysis of propeller-shafting systems in non-uniform flows. Ocean Engineering, 2022, 247, 110424.
[73] J. Su, W. He, K. Zhang, Q. Zhang, Y. Qu. Vibration analysis of functionally graded porous cylindrical shells filled with dense fluid using an energy method. Applied Mathematical Modelling, 2022, 108, 167-188.
[72] J. Zhang, F. Xie, Y. Qu*, G. Meng. Acoustic waves radiated from two degrees-of-freedom nonlinear rigid oscillator systems immersed in unbounded compressible fluid. Journal of Vibration and Acoustics - ASME, 2022, 144(1): 011003.
[71] F. Xie, Y. Qu*, G. Meng. Numerical analyses of nonlinear acoustic wave radiation behaviors of vibrational objects immersed in infinite fluid. Mechanical Systems and Signal Processing, 2022, 163: 108176.
[70] J. Zhu, Y. Qu*, J. Zhang, H. Su, G. Meng. A multi-layer overlapping structure for continuous broadband acoustic wave absorption at lower-frequencies. Applied Acoustics, 2022, 187: 108496.
[69] W. Gu, J. Zhang, L. Pan, Y. Qu, J. H. Choi, X. Zhu. Coupling effect of nonlinear stiffness of tape spring hinges and flexible deformation of panels during orbit maneuvers. Aerospace, 2022, 9(1): 30.
[68] F. Xie, Y. Qu, G. Meng. Finite-amplitude acoustic responses of large-amplitude vibration objects with complex geometries in an infinite fluid. Journal of the Acoustical Society of America, 2022, 151(1): 529-543.
[67] X. Guo, S. Wang, Y. Qu, D. Cao. Nonlinear dynamics of Z-shaped morphing wings in subsonic flow. Aerospace Science and Technology, 2021, 119: 107145.
[66] M. Lin, C. Cheng, Z. Peng, X. Dong, Y. Qu, G. Meng. Nonlinear dynamical system identification using the sparse regression and separable least squares methods. Journal of Sound and Vibration, 2021, 505: 116141.
[65] Y. Zheng, J. Zhang, Y. Qu, G. Meng. Adaptive nonreciprocal wave attenuation in linear piezoelectric metastructures shunted with one-way electrical transmission lines. Journal of Sound and Vibration, 2021, 503: 116113.
[64] J. Su, Y. Qu, K. Zhang, Q. Zhang, Y. Tian. Vibration analysis of functionally graded porous piezoelectric deep curved beams resting on discrete elastic supports. Thin-Walled Structures, 2021, 164: 107838.
[63] J. Li, Y. Qu, Y. Chen, H. Hua. Numerical analysis on dynamic behaviors of coupled propeller-shafting system of underwater vehicles. Applied Ocean Research, 2021, 110: 102613.
[62] Y. Qu, F. Xie, H. Su, G. Meng. Numerical analysis of stick-slip induced nonlinear vibration and acoustic responses of composite laminated plates with friction boundaries. Composite Structures, 2021, 258: 113316.
[61] J. Li, Y. Qu, Y. Chen, H. Hua, J. Wu. Dynamic responses of elastic marine propellers in non-uniform flows. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2021.
[60] X. Guo, K. Luo, Y. Qu, D. Cao. The design and aerodynamic analysis of intelligent variable camber airfoils with MFC. International Journal of Dynamics and Control, 2021.
[59] Y. Zheng, J. Zhang, Y. Qu, G. Meng. Investigations of a piezoelectric metastructure using negative-resistance circuits to enhance the bandgap performance. Journal of Vibration and Control, 2022,28 (17-18), 2346-2356
[58] J. Zhang, Y. Qu, F. Xie, Z. Peng, W. Zhang, G. Meng. Investigations on nonlinear aerothermoelastic behaviors of multilayered composite panels subject to frictional boundaries and random acoustic loads in supersonic flow. Thin-Walled Structures, 2021, 158: 107180.
[57] J. Li, Y. Qu, H. Hua. Numerical analysis of added mass and damping of elastic hydrofoils. Journal of Hydrodynamics, 2020, 32(5): 1009-1023.
[56] J. Hu, W. Chen, S. Ren, S. Zhang, Y. Qu, Y. Yin, D. Yang. Building performance monitoring and analysis of a large-span aerogel-membrane airport terminal. Engineering Structures, 2020, 219: 110837.
[55] Y. Qu, D. Liang, G. Meng. Vibration and acoustic waves of multilayered cylindrical shells carrying internal components attached by nonlinear compliant mounts. European Journal of Mechanics, A/Solids, 2020, 83: 104032.
[54] Z. Li, B. Wen, Z. Peng, X. Dong, Y. Qu. Dynamic modeling and analysis of wind turbine drivetrain considering the effects of non-torque loads. Applied Mathematical Modelling, 2020, 83: 146-168.
[53] J. Hu, W. Chen, Y. Qu, D. Yang. Safety and serviceability of membrane buildings: A critical review on architectural, material and structural performance. Engineering Structures, 2020, 210: 110292.
[52] F. Xie, Y. Qu, M. A. Islam, G. Meng. A sharp-interface Cartesian grid method for time-domain acoustic scattering from complex geometries. Computers & Fluids, 2020, 202: 104498.
[51] J. Li, Y. Qu, Z. Zhang, H. Hua. Parametric analysis on hydroelastic behaviors of hydrofoils and propellers using a strongly coupled finite element/panel method. Journal of Marine Science and Technology, 2020, 25(1): 148-161.
[50] Z. Li, B. Wen, X. Dong, Z. Peng, Y. Qu, W. Zhang. Aerodynamic and aeroelastic characteristics of flexible wind turbine blades under periodic unsteady inflows. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197: 104057.
[49] J. Hu, W. Chen, Y. Li, Y. Qu, B. Zhao, D. Yang. Temperature-stress-time methodology for flat-patterning ETFE cushions in use for large-span building structures. Engineering Structures, 2020, 204: 109607.
[48] R. Shi, Y. Qu, R. C. Batra. Numerical simulation of underwater explosion wave propagation in water-solid-air/water system using ghost fluid/solid method. Journal of Fluids and Structures, 2019, 90: 354-378.
[47] Y. Qu, F. Xie, G. Meng. Nonlinear dynamic and acoustic analysis of orthogonally stiffened composite laminated cylindrical shells containing piecewise isolators. Journal of Sound and Vibration, 2019, 456: 199-220.
[46] F. Xie, Y. Qu, Q. Guo, W. Zhang, Z. Peng. Nonlinear flutter of composite laminated panels with local non-smooth friction boundaries. Composite Structures, 2019, 223: 110934.
[45] Y. Qu, Z. Peng, W. Zhang, G. Meng. Nonlinear vibro-acoustic behaviors of coupled sandwich cylindrical shell and spring-mass-damper systems. Mechanical Systems and Signal Processing, 2019 124: 254-274.
[44] Y. Qu, W. Zhang, Z. Peng, G. Meng. Nonlinear structural and acoustic responses of three-dimensional elastic cylindrical shells with internal mass-spring systems. Applied Acoustics, 2019, 149: 143-155.
[43] Y. Qu, W. Zhang, Z. Peng, G. Meng. Time-domain structural-acoustic analysis of composite plates subjected to moving dynamic loads. Composite Structures, 2019, 208: 574-584.
[42] F. Xie, Y. Qu, W. Zhang, Z. Peng, G. Meng. Nonlinear aerothermoelastic analysis of composite laminated panels using a general higher-order shear deformation zig-zag theory. International Journal of Mechanical Sciences, 2019, 150: 226-237.
[41] J. Li, Y. Qu, Y. Chen, H. Hua. Investigation of added mass and damping coefficients of underwater rotating propeller using a frequency-domain panel method. Journal of Sound and Vibration, 2018, 432: 602-620.
[40] J. Su, K. Zhou, Y. Qu, H. Hua. A variational formulation for vibration analysis of curved beams with arbitrary eccentric concentrated elements. Archive of Applied Mechanics, 2018, 88(7): 1089–1104.
[39] J. Li, Z. Rao, J. Su, H. Hua, Y. Qu. A numerical method for predicting the hydroelastic response of marine propellers. Applied Ocean Research, 2018, 74, 188–204.
[38] J. Su, Z. Lei, Y. Qu, H. Hua. Effects of non-axisymmetric structures on vibro-acoustic signatures of a submerged vessel subject to propeller forces. Applied Acoustics, 2018, 133: 28-37.
[37] Y. Qu, R. Shi, R. C. Batra. An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids. Journal of Computational Physics, 2018, 354: 672-691.
[36] J. Su, Y. Qu, H. Hua. Modal coupling in the vibroacoustic responses of submerged spherical-cylindrical-spherical shells stiffened by ribs and plates, Noise Control Engineering Journal, 2018, 66(1): 45-55.
[35] Y. Qu, R. C. Batra. Constrained moving least-squares immersed boundary method for fluid-structure interaction analysis. International Journal for Numerical Methods in Fluids, 2017, 85(12): 675-692.
[34] J. Li, Y. Qu, H. Hua. Hydroelastic analysis of underwater rotating elastic marine propellers by using a coupled BEM-FEM algorithm. Ocean Engineering, 2017, 146: 178–191.
[33] S. Ren, X. Long, Y. Qu, G. Meng. A semi-analytical method for stability analysis of milling thin-walled plate. Meccanica, 2017, 52(11-12): 2915-2929.
[32] Y. Qu, J. Su, H. Hua, G. Meng. Structural vibration and acoustic radiation of coupled propeller-shafting and submarine hull system due to propeller forces. Journal of Sound and Vibration, 2017, 401: 76–93.
[31] Y. Qu, G. Meng. Nonlinear vibro-acoustic analysis of composite sandwich plates with skin-core debondings. AIAA Journal, 2017, 55(5): 1723-1733.
[30] C. Li, J. Wang, Y. Qu, Z. Zhang, H. Hua. Numerical and experimental investigation on vibro-acoustic response of a shaft-hull system. Engineering Analysis with Boundary Elements, 2016, 71: 129-139.
[29] B. Zhao, J. Hu, W. Chen, Z. Qiu, J. Zhou, Y. Qu, B. Ge. Photothermal performance of an amorphous silicon photovoltaic panel integrated in a membrane structure. Journal of Physics D: Applied Physics, 2016, 49(39), 395601.
[28] Y. Qu, G. Meng. Prediction of acoustic radiation from functionally graded shells of revolution in light and heavy fluids. Journal of Sound and Vibration, 2016, 376: 112-130.
[27] X. Xie, H. Zheng, Y. Qu. A variational formulation for vibro-acoustic analysis of a panel backed by an irregularly-bounded cavity. Journal of Sound and Vibration, 2016, 373: 147-163.
[26] J. Hu, W. Chen, Q. Cai, C. Gao, B. Zhao, Z. Qiu, Y. Qu. Structural behavior of the PV–ETFE cushion roof. Thin-Walled Structures, 2016, 101: 169-180.
[25] Y. Qu, G. Meng. Vibro-acoustic analysis of multilayered shells of revolution based on a general higher-order shear deformable zig-zag theory. Composite Structures, 2015, 134: 689-707.
[24] J. Hu, W. Chen, Z. Qiu, B. Zhao, J. Zhou, Y. Qu. Thermal performances of ETFE cushion roof integrated amorphous silicon photovoltaic. Energy Conversion and Management, 2015, 106: 1201-1211.
[23] Y. Qu, H. Hua, G. Meng. Vibro-acoustic analysis of coupled spherical-cylindrical-spherical shells stiffened by ring and stringer reinforcements. Journal of Sound and Vibration, 2015, 355: 345-359.
[22] B. Zhao, W. Chen, J. Hu, Z. Qiu, Y. Qu, B. Ge. A thermal model for amorphous silicon photovoltaic integrated in ETFE cushion roofs. Energy Conversion and Management, 2015, 100: 440-448.
[21] Y. Qu, S. Wu, H. Li, G. Meng. Three-dimensional free and transient vibration analysis of composite laminated and sandwich rectangular parallelepipeds: Beams, plates and solids. Composites Part B: Engineering, 2015, 73: 96-110.
[20] S. Wu, Y. Qu, H. Hua. Free vibration of laminated orthotropic conical shell on Pasternak foundation by a domain decomposition method. Journal of Composite Materials, 2015, 49(1): 35-52.
[19] Y. Qu, G. Meng. Dynamic analysis of composite laminated and sandwich hollow bodies of revolution based on three-dimensional elasticity theory. Composite Structures, 2014, 112(1): 378-396.
[18] Y. Qu, G. Meng. Three-dimensional elasticity solution for vibration analysis of functionally graded hollow and solid bodies of revolution. Part II: Application. European Journal of Mechanics - A: Solids, 2014, 44: 234-248.
[17] Y. Qu, G. Meng. Three-dimensional elasticity solution for vibration analysis of functionally graded hollow and solid bodies of revolution. Part I: Theory. European Journal of Mechanics - A: Solids, 2014, 44: 222-233.
[16] Y. Qu, Y. Chen, X. Long, H. Hua, G. Meng. A variational method for free vibration analysis of joined cylindrical-conical shells. Journal of Vibration and Control, 2013, 19(16): 2319-2334.
[15] Y. Qu, X. Long, H. Li, G. Meng. A variational formulation for dynamic analysis of composite laminated beams based on a general higher-order shear deformation theory. Composite Structures, 2013, 102: 175-192.
[14] Y. Qu, X. Long, G. Yuan, G. Meng. A unified formulation for vibration analysis of functionally graded shells of revolution with arbitrary boundary conditions. Composites Part B: Engineering, 2013, 50: 381-402.
[13] S. Wu, Y. Qu, H. Hua. Vibrations characteristics of joined cylindrical-spherical shell with elastic-support boundary conditions. Journal of Mechanical Science and Technology, 2013, 27(5): 1265-1272.
[12] Y. Qu, S. Wu, Y. Chen, H. Hua. Vibration analysis of ring-stiffened conical–cylindrical–spherical shells based on a modified variational approach. International Journal of Mechanical Sciences, 2013, 69: 72-84.
[11] Y. Qu, X. Long, S. Wu, G. Meng. A unified formulation for vibration analysis of composite laminated shells of revolution including shear deformation and rotary inertia. Composite Structures, 2013, 98: 169-191.
[10] Y. Qu, Y. Chen, X. Long, H. Hua, G. Meng. Free and forced vibration analysis of uniform and stepped circular cylindrical shells using a domain decomposition method. Applied Acoustics, 2013, 74(3): 425-439.
[9] S. Wu, Y. Qu, H. Hua. Vibration characteristics of a spherical-cylindrical- spherical shell by a domain decomposition method. Mechanics Research Communications, 2013, 49: 17-26.
[8] Y. Qu, Y. Chen, Y. Chen, X. Long, H. Hua, G. Meng. A domain decomposition method for vibration analysis of conical shells with uniform and stepped thickness. Journal of Vibration and Acoustics-Transactions of the ASME, 2013, 135(1): 011014.
[7] Y. Qu, G. Yuan, S. Wu, G. Meng. Three-dimensional elasticity solution for vibration analysis of composite rectangular parallelepipeds. European Journal of Mechanics - A: Solids, 2013, 42: 376-394.
[6] Y. Qu, H. Hua, G. Meng. A domain decomposition approach for vibration analysis of isotropic and composite cylindrical shells with arbitrary boundaries. Composite Structures, 2013, 95: 307-321.
[5] Y. Qu, Y. Chen, X. Long, H. Hua, G. Meng. A modified variational approach for vibration analysis of ring-stiffened conical–cylindrical shell combinations. European Journal of Mechanics - A: Solids, 2013, 37: 200-215.
[4] S. Wu, Y. Qu, X. Huang, H. Hua. Free vibration analysis on combined cylindrical-spherical shell. Applied Mechanics and Materials, 2012, 226-228: 3-8.
[3] S. Wu, Y. Qu, H. Hua. A domain decomposition method for forced vibration analysis of joined conical-cylindrical-spherical shell. Applied Mechanics and Materials, 2012, 184-185: 3-10.
[2] Y. Qu, X. Long, G. Meng, H. Hua. A domain decomposition method for free vibration of circular cylindrical shells with discontinuity in thickness. Advanced Science Letters, 2012, 12: 309-314.
[1] C. Bu, Y. Qu, Z. Cheng, B. Liu. Numerical simulation of impact on pneumatic DTH hammer percussive drilling. Journal of Earth Science, 2009, 20(5): 868–878.
三、会议论文
[17] Yegao Qu. Structural-acoustic interactions of elastic structures containing Nonlinearities. International Symposium on High-fidelity Computational Methods & Applications, 13 – 16 December, 2019, Shanghai, China.
[16] H. Su, Y. G. Qu, S. C. Zhou, Y. Zhou, T. Wu, Z. K. Peng. Fluid-structure interaction analysis of elastic pipes with gas-liquid two-phase flow. 2nd International Conference on Mechanics of Advanced Materials and Structures, 2019, 19-22 October,Nanjing, China.
[15] Yegao Qu, Guang Meng. An accurate immersed boundary method for fluid-solid interaction simulation. 2nd International Conference on Mechanics of Advanced Materials and Structures, 2019, 19-22 October,Nanjing, China.
[14] Y. Qu, F. Xie, W. Zhang, Z. Peng, G.Meng. Nonlinear structural-acoustic analysis of orthogonally stiffened composite cylindrical shells with piecewise isolators. The 48th International Congress and Exposition on Noise Control Engineering (INTER-NOISE 2019), 2019, 16-19 June, Madrid, Spain.
[13] Y. Qu, W. Zhang, Z. Peng, G. Meng. Nonlinear structural and acoustic responses of debonded sandwich shells. The 47th International Congress and Exposition on Noise Control Engineering (INTER-NOISE 2018), 2018, 26-29 August, Chicago, USA
[12] F. Xie, Y. Qu, W. Zhang, Z. Peng, G. Meng. Nonlinear panel flutter analysis using a general higher-order shear deformation plate theory. 25th International Congress on Sound and Vibration, 2018, 8-12 July, Hiroshima, Japan.
[11] Su, Jinpeng; Qu, Yegao; Zhou, Kai; et al. Modal coupling in the vibro-acoustic responses of submerged coupled shells. The 46th International Congress and Exposition on Noise Control Engineering (INTER-NOISE 2017), 2017, 27-30 August, Hong Kong.
[10] Y. Qu, R.C. Batra. An accurate immersed boundary method for fluid-solid interaction simulation. 2016 Macromolecules Innovation Institute Annual Meeting, 10-12 October, 2016, Blacksburg, USA.
[9] Y. Qu, R.C. Batra. Robust Cartesian grid method for simulating compressible viscous flows with geometrically complex bodies. The 2016 Fall Fluid Mechanics Symposium, 16 November, 2016, Blacksburg, USA.
[8] Y. Qu, G. Meng. Nonlinear vibro-acoustic analysis of composite plates with embedded delaminations. The 23rd International Congress on Sound and Vibration, 10-14 July, 2016, Athens, Greece.
[7] Y. Qu, H. Hua, G. Meng. Structural‐acoustic coupling analysis of a submarine hull due to propeller force. The 23rd International Congress on Sound and Vibration, 10-14 July, 2016, Athens, Greece.
[6] Y. Qu, H. Li, F. Li, G. Meng. Nonlinear vibration and sound radiation from skin/core debonded sandwich plates. The 24th International Congress of Theoretical and Applied Mechanics (ICTAM), 21-26 August, 2016, Montreal, Canada.
[5] Y. Qu, H. Hua, H. Peters, N. Kessissoglou. Modal contributions to the acoustic responses of fluid-loaded shells. 43rd International Congress on Noise Control Engineering, 16-19 November, 2014, Melbourne, Australia.
[4] Y. Qu, S.Wu, X. Long, Y. Chen, H. Hua. Dynamic analysis of complex FGM shell combinations with arbitrary boundary conditions. 17th International Conference on Composite Structures (ICCS17), 17-21 June, 2013, Porto, Portugal.
[3] S. Wu, Y. Qu, G. Yuan, H. Hua. Free vibration of laminated orthotropic conical shell on Pasternak foundation by a domain decomposition method. 17th International Conference on Composite Structures (ICCS17), 17-21 June, 2013, Porto, Portugal.
[2] Y. Qu, H. Hua, Y. Chen, G. Meng. A new variational method for free vibration analysis of conical shells with discontinuity in thickness. The 23rd International Congress of Theoretical and Applied Mechanics (XXIII ICTAM), 19-24 August, 2012, Beijing, China.
[1] Y. Qu, H. Hua, Y. Chen, X. Long, G. Meng. A domain decomposition method for vibration analysis of submarine hulls. ISMA2012 International Conference on Noise and Vibration Engineering, 17-19 September, 2012, Leuven, Belgium.