个人简介
教育经历
2007.9-2011.7东北大学信息科学与工程学院测控技术与仪器专业学士学位
2011.9-2013.7东北大学信息科学与工程学院电气工程专业硕士学位
2013.9-2018.7东北大学信息科学与工程学院控制理论与控制工程专业博士学位
工作经历
2018.7-至今 东北大学 计算机科学与工程学院 博士后
2018.7-2022.12 东北大学信息科学与工程学院讲师
2023.1-至今东北大学信息科学与工程学院副教授
研究领域
(1) 能源管道电磁无损检测
(2) 输变电设备故障诊断与健康管理
(3) 面向工业大数据的人工智能与深度学习
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
(1)Lu SX, Feng J, Zhang HG, et al. An Estimation Method of Defect Size From MFL Image Using Visual Transformation Convolutional Neural Network [J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 213-224.
(2)Lu SX, Zhou TH, Wang CY, et al. An Internal Detector Positioning Method in Oil Pipelines Using Vibration Signal [J]. IEEE Sensors Journal, 2023, 23(12): 13411-13421.
(3)Lu SX, Feng J, Li FM, et al. Precise Inversion for the Reconstruction of Arbitrary Defect Profiles Considering Velocity Effect in Magnetic Flux Leakage Testing [J]. IEEE Transactions on Magnetics, 2017, 53(4): 1-12.
(4)Lu SX, Yue YQ, Liu XY, et al. A novel unbalanced weighted KNN based on SVM method for pipeline defect detection using eddy current measurements [J]. Measurement Science and Technology, 2023, 34(1): 1-9.
(5)Hou DF, Lu SX, Yi GM, et al. A Target-Focusing Optimization Method for 3-D Profile Reconstruction of Defects Using MFL Measurements [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-11.
(6)Feng J, Lu SX, Liu JH, et al. A Sensor Liftoff Modification Method of Magnetic Flux Leakage Signal for Defect Profile Estimation [J]. IEEE Transactions on Magnetics, 2017, 53(7): 1-13.
(7)Feng J, Xiao Q, Lu SX, et al. A Double Remote Magnetic Field Synthesis Method for Reducing High-Speed MFL Signal Distortion Caused by Velocity Effect [J]. IEEE Transactions on Industrial Electronics, 2024, 71(1): 1049-1059.
(8)Feng J, Zhang XB, Lu SX, et al. A Single-Stage Enhancement-Identification Framework for Pipeline MFL Inspection [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-13.
(9)Feng J, Yao Y, Lu SX, et al. Domain Knowledge-Based Deep-Broad Learning Framework for Fault Diagnosis [J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3454-3464.
(10)Zhang XB, Feng J, Lu SX, et al. FMD-Framework: A Size Estimation Method for Pipeline Defects in Weld-Affected Zones [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-11.
(11)Feng J, Li FM, Lu SX, et al. Injurious or Noninjurious Defect Identification From MFL Images in Pipeline Inspection Using Convolutional Neural Network [J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1883-1892.
(12)Xiao Q, Feng J, Lu SX, et al. Accurate Identification for 3-D Position of Hybrid Defects in Ferromagnetic Pipe Using External Remote Field Eddy Current Testing [J]. IEEE Transactions on Magnetics, 2022, 58(3): 1-10.
(13)Zhang SX, Feng J, Lu SX, et al. Weak Magnetic Flux Leakage Detection and Numerical Method Under Inclined Pressure Conditions [J]. IEEE Transactions on Magnetics, 2023, 59(8): 1-9.
(14)Zhang SX, Feng J, Lu SX. A novel method for fusing graph convolutional network and feature based on feedback connection mechanism for nondestructive testing [J]. Pattern Recognition Letters, 2022, 164: 284-292.
(15)Zhang SX, Feng J, Lu SX, et al. A novel MFL detection method based on low frequency AC magnetization for identification defect [J]. Journal of Magnetism and Magnetic Materials, 2023, 580: 1-11.
(16)Zhang SX, Feng J, Lu SX, et al. A stress defect state measurement method based on low-frequency ACMFL excitation and Hall sensor array collection [J]. Measurement Science and Technology. 2023: 1-10
(17)卢森骧, 徐行, 张润江等. 基于多维度选择性搜索的小样本缺陷识别方法[J]. 仪器仪表学报, 2022, 43(01): 220-228
(18)卢森骧, 神祥凯, 张俊楠等. 基于三轴融合的漏磁内检测数据缺陷反演方法研究[J]. 仪器仪表学报, 2021, 42(12): 245-253