当前位置: X-MOL首页全球导师 国内导师 › 李同柱

个人简介

本人的研究兴趣在子流形几何(主要子流形的Lie球几何,子流形的Moebius几何,子流形的Laguerre几何和常曲率空间中子流形的等距群几何)和黎曼流形的大范围几何。主持国家自然科学基金4项,参与国家自然科学基金4项,参与科技部重点研发项目一项。在国内外数学专业期刊发表学术论文40多篇。获教育部2014年度高等学校科学研究优秀成果奖(自然类)一等奖一项。 教育背景 2005年北京大学数学科学学院 博士 工作经历 2005/06—2007/06,北京理工大学数学系,讲师 2007/07—2009/06,首都师范大学数学系,博士后 2009/06---2012/06,北京理工大学数学系,讲师 2012/07---2014/01,北京理工大学数学系,副教授 2014/02—2015/02,加州大学圣克鲁茨分校数学系,访问研究员 2015/03---2018/06,北京理工大学数学系,副教授 2018/07—至今,北京理工大学数学系,教授

研究领域

子流形几何和大范围黎曼流形几何与拓扑

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

姬秀; 李同柱,Lorentz空间中的Para-isotropic超曲面. (Chinese) 数学学报(中文版) 64 (2021), no. 1, 47–58. Xie, Zhenxiao; Li, Tongzhu; Ma, Xiang; Wang, Changping ,Wintgen ideal submanifolds: new examples, frame sequence and M?bius homogeneous classification. Adv. Math. 381 (2021), Paper No. 107620, 31 pp. Ji, Xiu; Li, Tongzhu ,Conformal homogeneous spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms. Houston J. Math. 46 (2020), no. 4, 935–951. Chen, Ya Yun; Ji, Xiu; Li, Tong Zhu, M?bius homogeneous hypersurfaces with one simple principal curvature in Sn+1. Acta Math. Sin. (Engl. Ser.) 36 (2020), no. 9, Ji, Xiu; Li, Tongzhu ,Conformal homogeneous spacelike surfaces in 3-dimensional Lorentz space forms. Differential Geom. Appl. 73 (2020), 101667, 16 pp. Deng, Zonggang; Li, Tongzhu, Conformally flat Willmore spacelike hypersurfaces in Rn+11. Turkish J. Math. 44 (2020), no. 1, 252–273. Lin, Limiao; Li, Tongzhu ,A M?bius rigidity of compact Willmore hypersurfaces in Sn+1. J. Math. Anal. Appl. 484 (2020), no. 1, 123707, 15 pp. Ji, Xiu; Li, Tongzhu; Sun, Huafei ,Para-Blaschke isoparametric spacelike hypersurfaces in Lorentzian space forms. Houston J. Math. 45 (2019), no. 3, 685–706. Ji, Xiu; Li, Tongzhu; Sun, Huafei, Spacelike hypersurfaces with constant conformal sectional curvature in Rn+11. Pacific J. Math. 300 (2019), no. 1, 17–37. Ji, Xiu; Li, TongZhu , A note on compact Móbius homogeneous submanifolds in Sn+1 Bull. Korean Math. Soc. 56 (2019), no. 3, 陈芝红;李同柱 , 空间形式中紧超曲面的刚性,数学进展,47 (2018), no. 5, 773–778. Lin, Limiao; Li, Tongzhu; Wang, Changping ,A M?bius scalar curvature rigidity on compact conformally flat hypersurfaces in Sn+1. J. Math. Anal. Appl. 466 (2018), no. 1, 762–775 Li, Tongzhu; Nie, Changxiong ,Spacelike Dupin hypersurfaces in Lorentzian space forms. J. Math. Soc. Japan 70 (2018), no. 2, 463–480. Xie, Zhenxiao; Li, Tongzhu; Ma, Xiang; Wang, Changping ,Wintgen ideal submanifolds: reduction theorems and a coarse classification. Ann. Global Anal. Geom. 53 (2018), no. 3, 377–403. Li, Tongzhu, M?bius homogeneous hypersurfaces with three distinct principal curvatures in Sn+1. Chinese Ann. Math. Ser. B 38 (2017), no. 5, 1131–1144. Li, Tongzhu; Qing, Jie; Wang, Changping ,M?bius curvature, Laguerre curvature and Dupin hypersurface. Adv. Math. 311 (2017), 249–294. Li, Tongzhu; Ma, Xiang; Wang, Changping; Xie, Zhenxiao, Wintgen ideal submanifolds of codimension two, complex curves, and M?bius geometry. Tohoku Math. J. (2) 68 (2016), no. 4, 621–638. Guo, Zhen; Li, Tongzhu; Wang, Changping, Classification of hypersurfaces with constant M?bius Ricci curvature in Rn+1. Tohoku Math. J. (2) 67 (2015), no. 3, 383–403. Li, Tongzhu; Ma, Xiang; Wang, Changping ,Wintgen ideal submanifolds with a low-dimensional integrable distribution. Front. Math. China 10 (2015), no. 1, 111–136. 李同柱; 聂昌雄, 四维球面空间中共形高斯映射调和 的超曲面,数学学报, 57 (2014), no. 6, 1231–1240. Li, Tongzhu; Wang, Changping ,Classification of M?bius homogeneous hypersurfaces in a 5-dimensional sphere. Houston J. Math. 40 (2014), no. 4, 1127–1146. Li, Tongzhu; Wang, Changping ,A note on Blaschke isoparametric hypersurfaces. Internat. J. Math. 25 (2014), no. 12, 1450117, 9 pp. Xie, ZhenXiao; Li, TongZhu; Ma, Xiang; Wang, ChangPing, M?bius geometry of three-dimensional Wintgen ideal submanifolds in S5. Sci. China Math. 57 (2014), no. 6, 1203–1220. Li, Tongzhu; Ma, Xiang; Wang, Changping, Deformation of hypersurfaces preserving the M?bius metric and a reduction theorem. Adv. Math. 256 (2014), 156–205. Li, Tongzhu, Compact Willmore hypersurfaces with two distinct principal curvatures in Sn+1. Differential Geom. Appl. 32 (2014), 35–45. Li, Tongzhu; Ma, Xiang; Wang, Changping, Willmore hypersurfaces with constant M?bius curvature in Rn+1. Geom. Dedicata 166 (2013), 251–267. Li, Tongzhu; Ma, Xiang; Wang, Changping, M?bius homogeneous hypersurfaces with two distinct principal curvatures in Sn+1. Ark. Mat. 51 (2013), no. 2, 315–328. Li, Tongzhu ,Willmore hypersurfaces with two distinct principal curvatures in Rn+1. Pacific J. Math. 256 (2012), no. 1, 129–149. Li, TongZhu, Laguerre homogeneous surfaces in R3. Sci. China Math. 55 (2012), no. 6, 1197–1214. Guo, Zhen; Li, Tongzhu; Lin, Limiao; Ma, Xiang; Wang, Changping, Classification of hypersurfaces with constant M?bius curvature in Sm+1. Math. Z. 271 (2012), no. 1-2, 193–219. Li, Tong Zhu; Sun, Hua Fei, Laguerre isoparametric hypersurfaces in R4. Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 6, 1179–1186. Li, TongZhu; Li, HaiZhong; Wang, ChangPing, Classification of hypersurfaces with constant Laguerre eigenvalues in Rn. Sci. China Math. 54 (2011), no. 6, 1129–1144. Li, Tongzhu, Homogeneous surfaces in Lie sphere geometry. Geom. Dedicata 149 (2010), 15–43. Nie, ChangXiong; Li, TongZhu; He, YiJun; Wu, ChuanXi, Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space. Sci. China Math. 53 (2010), no. 4, 953–965. Li, Tongzhu; Li, Haizhong; Wang, Changping ,Classification of hypersurfaces with parallel Laguerre second fundamental form in Rn. Differential Geom. Appl. 28 (2010), no. 2, 李同柱; 孙华飞, 球面中具有调和曲率的超曲面. 数学进展 37 (2008), no. 1, 57–66. Li, Tongzhu; Peng, Linyu; Sun, Huafei, The geometric structure of the inverse gamma distribution. Beitr?ge Algebra Geom. 49 (2008), no. 1, 217–225. Li, Tongzhu; Wang, Changping, Laguerre geometry of hypersurfaces in Rn. Manuscripta Math. 122 (2007), no. 1, 73–95. Li, Tong Zhu ,Laguerre geometry of surfaces in R3. Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1525–1534. Li Tongzhu, Nie Changxiong, Conformal geometry of hypersurfaces in Lorentz space forms, Geometry, 2013, Vol.2013, Article ID 549602. Li Tongzhu, Demeter Krupka, The Geometry of Tangent Bundles: Canonical Vector Fields, Geometry, 2013, Vol.2013, Article ID 364301. 李同柱,郭震, 常曲率流形中具平行李奇曲率的超曲面, 数学学报,2004, 47 ,587—592.

推荐链接
down
wechat
bug