近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Year-2022
(93) Chen, X., Wang, X.L.*, Yu, J.H., Shu, L.S., Wang, R.C., Tran, M., Sun, T., Nguyen, D.L., Lu, J.J., Episodic differentiation and eruption of plume-related felsic magmas in the Tu Le Basin, northern Vietnam. in revision.
(92) Du, D.H., Tang, M., Li, W., Kay, S.M., Wang, X.L.*, 2022. What drives Fe depletion in calc-alkaline magma differentiation: insights from Fe isotopes. Geology, accepted.
(91) Du, D.H., Wang, X.L.*, Wang, S., Miller, C.F., Xu, X., Chen, X., Zhang, F.F., 2022. Deciphering cryptic multi-stage crystal-melt separation during construction of the Tonglu volcanic-plutonic complex, SE China. Journal of Petrology, accepted, https://doi.org/10.1093/petrology/egab098.
(90) Xu, H., Qiu, J.S., Wang, X.L.*, Hong, Y.-F., Wang, R.-Q., Li, Y.-F., 2022. Slow crystal settling controls the diversity of high-silica granites of the Late Cretaceous Shengsi Pluton at northeastern tip of southeast China. Journal of Asian Earth Sciences, 223, 104986, https://doi.org/10.1016/j.jseaes.2021.104986.
Year-2021
(89) Wang, D., Wang, X.L.*, Bindeman, I.N., Du, D.-H., Li, J.Y., Jiang, C.-H., 2021. Ephemeral Magma Reservoirs During the Incremental Growth of the Neoproterozoic Jiuling Composite Batholith in South China. Journal of Geophysical Research: Solid Earth,126, e2021JB022758, https://doi.org/10.1029/2021JB022758.
(88) Zhang, Y.-Z., Wang, X.L.*, Li, J.Y., He, Z.-Y., Zhang, F.-F., Chen, X., Wang, S., Du, D.-H., Huang, Y., Jiang, C.-H., 2021. Oligocene Leucogranites of the Gangdese Batholith, Southern Tibet: Fractional Crystallization of Felsic Melts from Juvenile Lower Crust. Journal of Petrology, 62(11), 1-29, https://doi.org/10.1093/petrology/egab076.
(87) Huang, Y., Wang, X.L.*, Li, J.Y., Wang, D., Jiang, C.-H.,Li, L.S., 2021. Early Neoproterozoic tectonic evolution of northern Yangtze Block: Insights from sedimentary sequences from the Dahongshan area. Precambrian Research, 365, 106382, https://doi.org/10.1016/j.precamres.2021.106382.
(86) Wang, R.C.*, Ni, P., Wang, X.L., 2021. Mesozoic magmatism and mineralization in Southeastern China: An introduction. Journal of Asian Earth Sciences, 219, 104921. https://doi.org/10.1016/j.jseaes.2021.104921.
(85) Zheng, Y.F.*, Miller, C.F., Xu, X., J.F., Moyen, Wang, X.L., 2021. Preface to the origin of granites and related rocks. Lithos, 402–403, 106380, https://doi.org/10.1016/j.lithos.2021.106380.
(84) Wang, X.L.*, Tang, M., Moyen, J.-F., Wang, D., Kröner, A., Hawkesworth, C.J., Xia, X.P., Xie, H.Q., Anhaeusser, C.R., Hofmann, A., Li, J.Y., Li, L.S., 2021. The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary. National Science Review, in press, https://doi.org/10.1093/nsr/nwab136.
(83) Li, R., Wang, X.L.*, Chen, H.*, Zheng, H., Guan, Y., Gu, J., Jin, G., 2021. NJUCal-1: A new calcite oxygen isotope reference material for microbeam analysis. Geostandards and Geoanalytical Research, 45, 747-754, https://doi.org/10.1111/ggr.12403.
(82) Wang, X.L.*, Wang, D., Du, D.H., Li, J.-Y., 2021. Diversity of granitic rocks constrained by disequilibrium melting and subsequent incremental emplacement and differentiation. Lithos, 402–403, 106255, https://doi.org/10.1016/j.lithos.2021.106255.
(81) Li, J.-Y., Tang, M., Lee, C.-T. A., Wang, X.L.*, Gu, Z.D., Xia, X.P., Wang, D., Du, D.H., Li, L.S., 2021. Rapid endogenic rock recycling in magmatic arcs. Nature Communications, 12, 3533, https://doi.org/10.1038/s41467-021-23797-3.
(80) Li, R.C., Chen, H.Y.*, Wu, N.P., Wang, X.L., Xia, X.P., 2021. Multiple sulfur isotopes in post-Archean deposits as a potential tracer for fluid mixing processes: An example from an iron oxide–copper–gold (IOCG) deposit in southern Peru.Chemical Geology,575, 120230, https://doi.org/10.1016/j.chemgeo.2021.120230.
(79) Wang, X.L.*, Liu, J.X., Lü, Q.-T., Wang, S., Wang, D., Chen, X., 2021. Evolution of deep crustal hot zones constrained by the diversity of Late Mesozoic magmatic rocks in SE China.Ore Geology Reviews,134, 104143, https://doi.org/10.1016/j.oregeorev.2021.104143.
(78) Li, J.-Y., Wang, X.L.*, Wang, D., Du, D.H., Yu, J.H., Gu, Z.-D., Huang, Y., Li, L.-S., 2021. Pre-Neoproterozoic continental growth of the Yangtze Block: from continental rifting to subduction–accretion. Precambrian Research,355, 106081, https://doi.org/10.1016/j.precamres.2020.106081.
(77) Wang, D., Wang, X.L.*. 2021. Dual mixing for the formation of Neoproterozoic granitic intrusions within the composite Jiuling batholith, South China. Contributions to Mineralogy and Petrology,176, 7, https://doi.org/10.1007/s00410-020-01757-2.
Year-2020
(76) 王孝磊*, 刘福来, 李军勇, 王迪. 2020. 前寒武纪俯冲和板块构造的渐进式演变. 中国科学-地球科学, 50(12), 1947 ~ 1968, doi:10.1360/SSTe-2020-0053. [Wang, X.L.*, Liu, F.-L., Li, J.-Y., Wang, D. 2020. The progressive onset and evolution of Precambrian subduction and plate tectonics. Science China Earth Sciences,63(12): 2068–2086, https://doi.org/10.1007/s11430-020-9698-0]
(75)徐夕生*, 王孝磊, 赵凯, 杜德宏. 2020. 新时期花岗岩研究的进展和趋势. 矿物岩石地球化学通报, 39(5),
(74) Jiang, W., Yu, J.H.*, Wang, X.L., Griffin, W.L., T. H. Pham, D.L. Nguyen, Wang, F.Q., 2020. Early Paleozoic magmatism in northern Kontum Massif, Central Vietnam: Insights into tectonic evolution of the eastern Indochina Block. Lithos,376–377, 105750. https://doi.org/10.1016/j.lithos.2020.105750.
(73) Jiang, C.-H., Wang, X.L.*, Wang, S., Du, D.H., Huang, Y., Zhang Y.-Z., Wang, D. 2020. Paleoproterozoic basement beneath the Eastern Cathaysia Block revealed by zircon xenocrysts from late Mesozoic volcanics. Precambrian Research,350, 105922. https://doi.org/10.1016/j.precamres.2020.105922.
(72) Liu, J.X., Wang, S., Wang, X.L.*, Du, D.H., Xing, G.F., Fu, J.M., Chen, X., Sun, Z.M., 2020. Refining the spatio-temporal distributions of Mesozoic granitoids and volcanic rocks in SE China. Journal of Asian Earth Sciences,201, 104503, https://doi.org/10.1016/j.jseaes.2020.104503.
(71) Wang, G.-G.*, Ni, P.*, Li, L., Wang, X.L., Zhu, A.-D., Zhang, Y.-H., Zhang, X., Liu, Z., Li, B., 2020. Petrogenesis of the Middle Jurassic andesitic dikes in the giant Dexing porphyry copper ore field, South China: Implications for mineralization. Journal of Asian Earth Sciences,196, 104375, https://doi.org/10.1016/j.jseaes.2020.104375.
(70) Li, W.-S., Ni, P.*, Wang, G.-G., Yang, Y.-L., Pan, J.-Y., Wang, X.L., Chen, L.-L., Fan, M.-S., 2020. A possible linkage between highly fractionated granitoids and associated W- mineralization in the Mesozoic Yaogangxian granitic intrusion, Nanling region, South China. Journal of Asian Earth Sciences,193, 104314, https://doi.org/10.1016/j.jseaes.2020.104314.
(69) 王硕, 王孝磊*, 杜德宏. 2020. 火山岩-侵入岩的联系.高校地质学报, 26(5), 497-505.
(68) Huang, D.L., Wang, X.L.*, Xia, X.P., Zhang, F.F., Wang, D., Sun, Z.M., Li, J.Y., Yang, Q., Du, D.H., Chen, X. 2020. Crustal anatexis recorded by zircon grains from early Paleozoic granitic rocks in Southeast China.Lithos,370–371, 105598, https://doi.org/10.1016/j.lithos.2020.105598.
(67) Sun, Z.-M., Wang, X.-L.*, Zhang, F.-F., Xie, H.-Q., Zhao, K., and Li, J.-Y., 2020. Diversity of felsic rocks in oceanic crust: Implications from the Neoproterozoic plagiogranites within the Northeast Jiangxi ophiolite, southern China.Journal of Geophysical Research: Solid Earth,125, e2019JB017414, https://doi.org/10.1029/2019JB017414.
Year-2019
(66) Du, D.H., Li, W., Wang, X.L.*, Shu, X.J., Yang, T., Sun, T., 2019. Fe isotopic fractionation during the magmatic–hydrothermal stage of granitic magmatism. Lithos,350-351, 105265, https://doi.org/10.1016/j.lithos.2019.105265.
(65) Huang, D.L., Wang, X.L.*, 2019. Reviews of geochronology, geochemistry, and geodynamic processes of Ordovician-Devonian granitic rocks in southeast China. Journal of Asian Earth Sciences,184, 104001, https://doi.org/10.1016/j.jseaes.2019.104001.
(64)Zhu, G.L., Yu, J. H.*, Zhou, X.Y., Wang, X.L., Wang, Y.D., 2019. The western boundary between the Yangtze and Cathaysia blocks, new constraints from the Pingbian Group sediments, southwest South China Block. Precambrian Research,331, 105350, https://doi.org/10.1016/j.precamres.2019.105350.
(63)Chen, X., Lee, C.T., Wang, X.L.*, Tang, M., 2019. Influence of water on granite generation: Modeling and perspective.Journal of Asian Earth Sciences,174, 126–134, https://doi.org/10.1016/j.jseaes.2018.12.001.
(62)Huang, D.L., Wang, X.L.*, Xia, X.P., Wan, Y.S., Zhang, F.F., Li, J.Y., Du, D.H., 2019. Neoproterozoic low-δ18O zircons revisited: implications for Rodinia configuration.Geophysical Research Letters,46,678–688, https://doi.org/10.1029/2018GL081117.
Year-2018
(61) Zhou, X.Y., Yu, J.-H.*, O'Reilly, S. Y., Griffin, W. L., Sun, T., Wang, X.L., Tran, M.D., Nguyen, D.L., 2018. Component variation in the late Neoproterozoic to Cambrian sedimentary rocks of SW China - NE Vietnam, and its tectonic significance. Precambrian Research, 308, 92–110, https://doi.org/10.1016/j.precamres.2018.02.003.
(60) Wang, G.G., Ni, P., Zhu, A.D., Wang, X.L., Li, L., Hu, J.S., Lin, W.H., Huang, B., 2018. 1.01–0.98 Ga mafic intra-plate magmatism and related Cu-Au mineralization in the eastern Jiangnan orogen: Evidence from Liujia and Tieshajie basalts. Precambrian Research,309, 6–21, https://doi.org/10.1016/j.precamres.2017.04.018.
(59) Zhao, J.H., Zhang, S.B., Wang, X.L., 2018. Neoproterozoic geology and reconstruction of South China. Precambrian Research,309, 1–5, https://doi.org/10.1016/j.precamres.2018.02.004.
(58) Li, J.Y., Wang, X.L.*, Gu, Z.D., 2018. Early Neoproterozoic arc magmatism of the Tongmuliang Group on the northwestern margin of the Yangtze Block: Implications for Rodinia assembly. Precambrian Research,309, 181–197, https://doi.org/10.1016/j.precamres.2017.04.040.
(57) Sun, Z.M., Wang, X.L.*, Qi, L., Zhang, F.F., Wang, D., Li, J.Y., Yu, M.G., Shu, X.J., 2018. Formation of the Neoproterozoic ophiolites in southern China: new constraints from trace element and PGE geochemistry and Os isotopes. Precambrian Research,309, 88–101, https://doi.org/10.1016/j.precamres.2017.12.042.
(56) Zhang, F.F., Wang, X.L.*, Sun, Z.M., Chen, X., Zhou, X.H., Yang, T., 2018. Geochemistry and zircon-apatite U-Pb geochronology of mafic dykes in the Shuangxiwu area: Constraints on the initiation of Neoproterozoic rifting in South China. Precambrian Research,309, 138–151, https://doi.org/10.1016/j.precamres.2017.04.008.
(55) Chen, X., Wang, X.L.*, Wang, D., Shu, X.J., 2018. Contrasting mantle-crust melting processes within orogenic belts: Implications from two episodes of mafic magmatism in the western segment of the Neoproterozoic Jiangnan Orogen in South China. Precambrian Research,309, 123–137, https://doi.org/10.1016/j.precamres.2017.04.001.
(54)Wang, D., Wang, X.L.*, Cai, Y., Goldstein, S.L., Yang, T., 2018. Do Hf isotopes in magmatic zircons represent those of their host rocks? Journal of Asian Earth Sciences,154, 202-212, https://doi.org/10.1016/j.jseaes.2017.12.025.
(53) Li, J.Y., Wang, X.L.*, Gu, Z.D., 2018. Petrogenesis of the Jiaoziding granitoids and associated basaltic porphyries: Implications for extensive early Neoproterozoic arc magmatism in western Yangtze Block. Lithos,296–299, 547–562, https://doi.org/10.1016/j.lithos.2017.11.034.
Year-2017
(52) Ye, H., Wu, C.-Z.*, Yang, T., Santosh, M., Yao, X.-Z., Gao, B.-F., Wang, X.L., and Li, W.*, 2017. Updating the Geologic Barcodes for South China: Discovery of Late Archean Banded Iron Formations in the Yangtze Craton. Scientific Reports, 7, 15082, https://doi.org/10.1038/s41598-017-15013-4.
(51) Zhou, X.Y., Yu, J.H.*, O’Reilly, S.Y., Griffin, W.L., Wang, X.L., and Sun, T., 2017. Sources of the Nanwenhe - Song Chay granitic complex (SW China – NE Vietnam) and its tectonic significance. Lithos, 290-291, 76-93, https://doi.org/10.1016/j.lithos.2017.07.017.
(50) Wang, D., Wang, X.L.*, Cai, Y., Chen, X., Zhang, F.R., and Zhang, F.F., 2017. Heterogeneous Conservation of Zircon Xenocrysts in Late Jurassic Granitic Intrusions within the Neoproterozoic Jiuling Batholith, South China: A Magma Chamber Growth Model in Deep Crustal Hot Zones. Journal of Petrology,58, 1781–1810, https://doi.org/10.1093/petrology/egx074.
(49) Du, D.H., Wang, X.L.*, Yang, T., Chen, X., Li, J.Y., Li, W.Q.*, 2017. Origin of heavy Fe isotope compositions in high-silica igneous rocks: a rhyolite perspective. Geochimica et Cosmochimica Acta,218, 58–72, https://doi.org/10.1016/j.gca.2017.09.014.
(48)王孝磊*, 周金城, 陈昕, 张凤凤, 孙梓铭. 2017. 江南造山带的形成和演化. 矿物岩石地球化学通报, 36 (5), 714–735.
(47) 王孝磊. 2017. 花岗岩研究的若干新进展与主要科学问题. 岩石学报, 33(5), 1445–1458.
(46) Zhang, F.F., Wang, X.L.*, Wang, D., Yu, J.H., Zhou, X.H., Sun, Z.M., 2017. Neoproterozoic backarc basin on the southeastern margin of the Yangtze block during Rodinia assembly: New evidence from provenance of detrital zircons and geochemistry of mafic rocks. GSA Bulletin,129, 904–919, https://doi.org/10.1130/B31528.1
Year-2016
(45) Li, J.Y., Wang, X.L.*, Zhang, F.F., Zhou, X.H., Shu, X.J., 2016. A rhythmic source change of the Neoproterozoic basement meta-sedimentary sequences in the Jiangnan Orogen: Implications for tectonic evolution on the southeastern margin of the Yangtze Block. Precambrian Research,280, 46–60, https://doi.org/10.1016/j.precamres.2016.04.012.
(44) Wang, G.-G., Ni, P.*, Zhao, C., Wang, X.-L., Li, P., Chen, H., Zhu, A.-D., and Li, L., 2016. Spatiotemporal reconstruction of Late Mesozoic silicic large igneous province and related epithermal mineralization in South China: Insights from the Zhilingtou volcanic-intrusive complex. Journal of Geophysical Research: Solid Earth,121, 7903–7928, https://doi.org/10.1002/2016JB013060.
Year-2014
(43) Wang, X.L.*, Coble, M.A., Valley, J.W., Shu, X.J., Kitajima, K., Spicuzza, M.J., Sun, T., 2014. Influence of radiation damage on Late Jurassic zircons from southern China: evidence from in situ measurements of oxygen isotopes, laser Raman, U-Pb ages, and trace elements. Chemical Geology,389, 122–136, https://doi.org/10.1016/j.chemgeo.2014.09.013.
(42) Xing, G.F.*, Wang, X.L.*, Wan, Y.S., Chen, Z.H., Jiang, Y., Kitajima, K., Ushikubo, T., Gopon, P., 2014. Diversity in early crustal evolution: 4100 Ma zircons in the Cathaysia Block of southern China. Scientific Reports, 4, 5143, https://doi.org/10.1038/srep05143.
(41)Chen, X., Wang, X.L.*, Gao, J.F., Shu, X.J., Zhou, J.C., Qi, L., 2014.Neoproterozoic chromite-bearing high-Mg diorites in the western part of the Jiangnan orogen, southern China: geochemistry, petrogenesis and tectonic implications. Lithos,200–201, 35–48, https://doi.org/10.1016/j.lithos.2014.04.007.
(40) Wang, X.L.*, Zhou, J.C., Griffin, W.L., Zhao, G.C., Yu, J.H., Qiu, J.S., Zhang, Y.J., Xing, G.F., 2014. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China. Precambrian Research, 242, 154–171, https://doi.org/10.1016/j.precamres.2013.12.023.
(39) Tang, M., Wang X.L.*, Shu X.J., Yang, T., Wang, D., Gopon, P., 2014. Hafnium isotopic heterogeneity in zircons from granitic rocks: geochemical evaluation and modeling of zircon effect in crustal anatexis. Earth and Planetary Science Letters,389, 188–199, https://doi.org/10.1016/j.epsl.2013.12.036.
Year-2013
(38) Wang, D., Wang, X.L.*, Zhou, J.C., Shu, X.J., 2013. Unravelling the Precambrian crustal evolution by Neoproterozoic basal conglomerates, Jiangnan orogen: U-Pb and Hf isotopes of detrital zircons. Precambrian Research,233, 223–236, https://doi.org/10.1016/j.precamres.2013.05.005.
(37) Wang, X.L.*, Zhou, J.C., Wan, Y.S., Kitajima, K., Wang, D., Bonamici, C., Qiu, J.S. and Sun, T., 2013. Magmatic evolution and crustal recycling for Neoproterozoic strongly peraluminous granitoids from southern China: Hf and O isotopes in zircon. Earth and Planetary Science Letters,366, 71–82, https://doi.org/10.1016/j.epsl.2013.02.011.
(36) Shu, X.J., Wang, X.L.*, Sun, T., Chen, W.F., Shen, W.Z., 2013. Crustal formation in the Nanling Range, South China Block: Hf isotope evidence of zircons from Phanerzoic granitoids. Journal of Asian Earth Sciences,74, 210–224, https://doi.org/10.1016/j.jseaes.2013.01.016.
(35) Wang, X.L.*, Jiang, S.Y., Dai, B.Z., Kern, J., 2013. Lithospheric thinning and reworking of Late Archean juvenile crust on the southern margin of the North China Craton: evidence from the Longwangzhuang Paleoproterozoic A-type granites and their surrounding Cretaceous adakite-like granites. Geological Journal,48, 498–515, https://doi.org/10.1002/gj.2464.
(34) 王孝磊*,于津海,舒徐洁,唐成虎,邢光福, 2013. 赣中周潭群副变质岩碎屑锆石U-Pb年代学. 岩石学报, 29(3), 801–811.
Year-2012
(33) 王孝磊*,舒徐洁,邢光福, 谢思文, 张春晖, 夏晗, 2012. 浙江诸暨地区石角-璜山侵入于LA-ICP-MS锆石U-Pb年龄——对超镁铁质球状岩成因的启示. 地质通报, 31(1), 75–81.
(32) Wang, X.L.*, Shu, X.J., Xu, X.S., Tang, M., Gaschnig, R., 2012. Petrogenesis of the Early Cretaceous adakite-like porphyries and associated basaltic andesites in the Jiangnan orogen, southern China. Journal of Asian Earth Sciences,61, 243–256, https://doi.org/10.1016/j.jseaes.2012.10.017.
(31) Wang, G.G., Ni, P.*, Zhao, K.D., Wang, X.L., Liu, J.Q., Jiang, S.Y., Chen, H., 2012. Petrogenesis of the Middle Jurassic Yinshan volcanic-intusive complex, SE China: implications for tectonic evolution and Cu-Au mineralization. Lithos,150, 135–154, https://doi.org/10.1016/j.lithos.2012.05.030.
(30) Wang, X.L.*, Shu, L.S., Xing, G.F., Zhou, J.C., Tang, M., Shu, X., Qi, L., Hu, Y.-H., 2012. Post-orogenic extension in the eastern part of the Jiangnan Orogen: evidence from ca 800-760 Ma volcanic rocks. Precambrian Research,222-223, 404–423, https://doi.org/10.1016/j.precamres.2011.07.003.
(29)Tang, M., Wang, X.L., Xu, X.-S.*, Zhu, C., Cheng, T., Yu, Y., 2012. Neoproterozoic subducted materials in the generation of Mesozoic Luzong volcanic rocks: Evidence from apatite geochemistry and Hf–Nd isotopic decoupling. Gondwana Research,21, 266–280, https://doi.org/10.1016/ j.gr.2011.05.009.
Year-2011
(28) Shu, X.J., Wang, X.L.*, Sun, T., Xu, X.S., Dai, M.N., 2011. Trace elements, U–Pb ages and Hf isotopes of zircons from Mesozoic granites in the western Nanling Range, South China: implications for petrogenesis and W–Sn mineralization. Lithos,127, 468–482, https://doi.org/10.1016/j.lithos.2011.09.019.
(27) Wang, X.L.*, Jiang, S.Y., Dai, B.Z., Griffin, W.L., Dai, M.N., Yang, Y.H., 2011. Age, geochemistry and tectonic setting of the Neoproterozoic (ca 830 Ma) gabbros on the southern margin of the North China Craton. Precambrian Research,190, 35–47, https://doi.org/10.1016/j.precamres.2011.08.004.
Year-2010
(26) Wang, X.L.*, Jiang, S.Y., Dai, B.Z., 2010. Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton. Precambrian Research,182, 204–216, https://doi.org/10.1016/ j.precamres.2010.08.007.
Year-2009
(25) 周金城*, 王孝磊, 邱检生. 2009. 江南造山带形成过程中若干新元古代地质事件. 高校地质学报, 15(4), 453–459.
(24) 戴宝章, 蒋少涌*, 王孝磊. 2009. 河南东沟钼矿花岗斑岩成因: 岩石地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约. 岩石学报, 25(11), 2889–2901.
(23) Zhou, J.C.*, Wang, X.L., Qiu, J.S., 2009. Geochronology of Neoproterozoic mafic rocks and sandstones from northeastern Guizhou, South China: Coeval arc magmatism and sedimentation. Precambrian Research,170, 27–42, https://doi.org/10.1016/ j.precamres. 2008.11.002.
Year-2008
(22) Wang, X.L.*, Zhao, G.C., Zhou, J.C., Liu, Y.S., Hu, J., 2008. Geochronology and Hf isotopes of zircon from volcanic rocks of the Shuangqiaoshan Group, South China: implications for the Neoproterozoic tectonic evolution of the eastern Jiangnan orogen. Gondwana Research,14, 355–367, https://doi.org/10.1016/j.gr.2008.03.001.
(21) Wang, X.L., Zhou, J.C.*, Qiu, J.S., Jiang, S.Y., Shi, Y.R., 2008. Geochronology and geochemistry of Neoproterozoic mafic rocks from western Hunan, South China: implications for petrogenesis and post-orogenic extension. Geological Magazine,145, 215–233, https://doi.org/doi:10.1017/S0016756807004025.
(20) 贺振宇, 徐夕生*, 王孝磊, 陈荣. 2008. 赣南橄榄安粗质火山岩的年代学与地球化学. 岩石学报, 24(11), 2524–2536.
(19) 周金城*, 王孝磊, 邱检生. 2008. 江南造山带是否格林威尔期造山带?—关于华南前寒武纪地质的几个问题. 高校地质学报, 14(1), 64–72.
Year-2007
(18) 于津海*, 王丽娟, 王孝磊, 邱检生, 赵蕾. 2007. 赣东南富城杂岩体的地球化学和年代学研究. 岩石学报, 23(6), 1441–1456.
(17) Wang, X.L.*, Zhou, J.C., Griffin, W.L., Wang, R.C., Qiu, J.S., O’Reilly, S.Y., Xu, X.S., Liu, X.M., Zhang, G.L., 2007. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: dating the assembly of the Yangtze and Cathaysia blocks. Precambrian Research,159, 117–131, https://doi.org/10.1016/j.precamres.2007.06.005.
(16) Xu, X.S.*, O’Reilly, S.Y., Griffin, W.L., Wang, X.L., Pearson, N.J., He, Z.Y., 2007. The Crust of Cathaysia: Age, Assembly and Reworking of Two Terranes. Precambrian Research,158, 51–78, https://doi.org/10.1016/j.precamres.2007.04.010.
Year-2006
(15) 胡建, 邱检生*, 王汝成, 蒋少涌, 凌洪飞, 王孝磊. 2006. 广东龙窝和白石冈岩体锆石U-Pb年代学、黑云母矿物化学及其成岩指示意义. 岩石学报, 22(10), 2464–2474.
(14) 周金城*, 蒋少涌, 王孝磊, 杨竞红, 张孟群. 2006. 东南沿海晚中生代镁铁质岩的Re-Os同位素组成. 岩石学报, 22(2), 407–413.
(13) 王孝磊, 周金城*, 邱检生, 张文兰, 柳小明, 张桂林. 2006. 桂北新元古代强过铝花岗岩的成因:锆石年代学和Hf同位素制约. 岩石学报, 22(2), 326–342.
(12) Wang, X.L., Zhou, J.C.*, Qiu, J.S., Zhang, W.L., Liu, X.M., Zhang, G.L., 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: implications for petrogenesis and tectonic evolution. Precambrian Research,145, 111–130, https://doi.org/doi:10.1016/j.precamres.2005.11.014.
(11) Zhou, J.C.*, Jiang, S.Y., Wang, X.L., Yang, J.H., Zhang, M.Q., 2006. Study on lithogeochemistry of Middle Jurassic basalts from southern China represented by the Fankeng basalts from Yongding of Fujian province. Science in China (series D),49, 1020–1031 (被SCI收录). [周金城, 蒋少涌, 王孝磊, 杨竞红, 张孟群. 2005. 华南中侏罗世玄武岩的岩石地球化学研究-以福建藩坑玄武岩为例. 中国科学(D辑), 35(10), 927–936.]
Year-2005
(10) 周金城*, 王孝磊, 邱检生. 2005. 江南造山带西段岩浆作用特性. 高校地质学报, 11(4), 527–533.
(09) 邱检生*, 胡建, 王孝磊, 蒋少涌, 王汝成, 徐夕生. 2005. 广东河源白石冈岩体:一个高分异的I型花岗岩. 地质学报, 79(4), 503–514.
(08) Zhou, J.C.*, Jiang, S.Y., Wang, X.L., Yang, J.H., Zhang, M.Q., 2005. Re-Os isochron age of Fankeng basalts from Fujian of SE China and its geological significance. Geochemical Journal,39, 497–502.
Year-2004
(07) 王孝磊, 周金城*, 邱检生, 高剑锋. 2004. 湘东北新元古代强过铝花岗岩的成因:年代学和地球化学证据. 地质论评, 2004, 50(1), 65–76.
(06) Wang, X.L., Zhou, J.C.*, Qiu, J.S., Gao, J.F., 2004. Geochemistry of the Meso- to Neoproterozoic basic-acid rocks from Hunan Province, South China: implications for the evolution of the western Jiangnan orogen. Precambrian Research,135, 79–103, https://doi.org/doi:10.1016/j.precamres.2004.07.006.
(05) Wang, X.L., Zhou, J.C.*, Qiu, J.S., Gao, J.F., 2004. Comment on “Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma?” by Xian-Hua Li et al. (PR 122, 45-83, 2003). Precambrian Research,132, 401–403, https://doi.org/doi:10.1016/j.precamres.2004.03.007.
(04) Zhou, J.C.*, Wang, X.L., Qiu, J.S., Gao, J.F., 2004. Geochemistry of Meso- and Neoproterozoic mafic- ultramafic rocks from northern Guangxi, China: arc or plume magmatism? Geochemical Journal,38, 139–152.
Year-2003
(03) 周金城*, 王孝磊, 邱检生, 高剑锋. 2003. 桂北中-新元古代镁铁质-超镁铁质岩的岩石地球化学. 岩石学报, 19(1), 9–18.
(02) 王孝磊, 周金城*, 邱检生, 高剑锋. 2003. 湖南中-新元古代火山侵入岩地球化学及成因意义. 岩石学报, 19(1), 49–60.
(01) 周金城*, 王孝磊, 邱检生, 高剑锋. 2003. 南桥高度亏损N-MORB的发现及其地质意义. 岩石矿物学杂志, 22(3), 211–216.