近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
代表性论文论著:
[1] Hu, Qing,Hu, Zhixing,Liao, Fucheng, Stability and Hopf bifurcation in a HIV-1 infection model with delays and logistic growth,Mathematics and Computers in Simulation, (2016年10月), 128: 26-41. (SCI,3区,影响因子:1.124).
[2] Zhixing Hu, Hongwei Wang, Fucheng Liao, Wanbiao Ma, Stability analysis of a computer virus model in latent period,Chaos, Solitons & Fractals, 75 (2015): 20–28.(SCI), Q2, 影响因子 1.448.
[3] Hui Wang, Xiaomin Hu, Zhixing Hu, and Fucheng Liao,Global Analysis of a Delayed Impulsive Lotka-Volterra Model with Holling III Type Functional Response, Mathematical Problems in Engineering, Volume 2015 (2015), Article ID 473539, 15 pages, http://dx.doi.org/10.1155/ 2015/473539. (SCI), Q3, 影响因子0.762
[4] Zhixing Hu*, Jiajia Zhang, Hui Wang, Wanbiao Ma, Fucheng Liao, Dynamics analysis of a delayed viral infection model with logistic growth and immune impairment, Applied Mathematical Modelling, 38 (2014): 524–534(SCI). Q1, 影响因子 2.251
[5] Tianlei Wang, Zhixing Hu*, Fucheng Liao,Stability and Hopf bifurcation for a virus infection model with delayed humoral immunity response, Journal of Mathematical Analysis and Applications, 411(2014), 63–74(SCI), Q1, 影响因子1.12
[6] Zhixing Hu, Weijuan Pang, Fucheng Liao, Wanbiao Ma, Analysis of a CD4+ T cell viral infection model with a class of saturated infection rate, Discrete and Continuous Dynamical Systems - Series B, 2014, 19(3): 735-745(SCI). Q3, 影响因子0.768
[7] Tianlei Wang, Zhixing Hu*, Fucheng Liao, Wanbiao Ma, Global stability analysis for delayed virus infection model with general incidence rate and humoral immunity, Mathematics and Computers in Simulation, 2013(89), 13-22(SCI). Q2, 影响因子 0.949
[8] Shengyu Zhou, Zhixing Hu, Wanbiao Ma, and Fucheng Liao, Dynamics Analysis of an HIV Infection Model including Infected Cells in an Eclipse Stage, Journal of Applied Mathematics, Volume 2013, 1-12 (SCI). Q3, 影响因子0.72
[9] Hui Wang, Rong Wang, Zhixing Hu, and Fucheng Liao, Stability Analysis of an In-Host Viral Model with Cure of Infected Cells and Humoral Immunity, Journal of Applied Mathematics, Volume 2013, (http://dx.doi.org/10.1155/2013/102757) 1-5(SCI) , Q3, 影响因子 0.72
[10] Zhixing Hu, Wanbiao Ma, Shigui Ruan, Analysis of SIR epidemic models with nonlinear incidence rate and treatment, Mathematical Biosciences, 238 (2012), 12–20(SCI). Q3, 影响因子 1.303
[11] Ping Bi, Zhixing Hu, Hopf bifurcation and stability for a neural network model with mixed delays, Applied Mathematics and Computation, 218(2012), 6748–6761(SCI). Q1, 影响因子1.551
[12] Xiaofan Huang, Zhixing Hu, Fucheng Liao, Wanbiao Ma, Dynamics of an improved hepatitis B virus infection model, International Journal of Information and Systems Science, 8(2),157-163, 2012;
[13] Xiaoping Wang, Zhixing Hu, Fucheng Liao, Wanbiao Ma, Global dynamics for viral infection model with Beddington-DeAngelis response, International Journal of Information and Systems Science, 8(2),164-173, 2012.
[14] Yu Fu, Hui Wang*, Zhixing Hu, Wanbiao Ma, Fucheng Liao, The effect of constant vaccination on an SIR epidemic model with infectious period, International Journal of Information and Systems Science, 8(1),75-82, 2012.
[15] Zhixing Hu, Ping Bi, Wanbiao Ma, Shigui Ruan. Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete and Continuous Dynamical Systems - Series B, 2011, 15(1), 93-112(SCI). Q3, 影响因子 0.768
[16] Xiangdong Liu, Hui Wang, Zhixing Hu, Wanbiao Ma. Global stability of an HIV pathogenesis model with cure rate. Nonlinear Analysis: Real World Applications. 12 (2011) , 2947–2961, 2011.12(SCI). Q1, 影响因子 2.519
[17] Zhixing Hu, Xiaofan Huang, Wanbiao, Ma. Stability analysis for a delayed SIRS epidemic model with vaccination and nonlinear incidence rate, Proceedings of the 5th International Congress on Mathematical Biology, 2011.6, 90-93。
[18] Zhixing Hu, Xia Li, Wanbiao, Ma. Stability analysis of a delayed model with lytic immune response for HIV infection. Proceedings of the 5th International Congress on Mathematical Biology, 2011.6, 83-89.
[19] Hui Wang, Bihong Gao, Zhixing Hu and Wanbiao Ma, The analysis of cannibalism on a predator-prey mode, "Proceedings of the 5th International Congress on Mathematical Biology", 2011.6, 2, 276-282
[20] Zhixing Hu, Guangke Gao, Wanbiao Ma, Dynamics of a three-species ratio-dependent diffusive model, Nonlinear analysis: Real World Applications,11 (2010) 2106-2114(SCI). Q1, 影响因子 2.519
[21] Zhixing Hu, Xiangdong Liu, Hui Wang, Wanbiao Ma, Analysis of the dynamics of a delayed HIV pathogenesis model, Journal of Computational and Applied Mathematics, 234 (2010) 461-476(SCI). Q1, 影响因子 1.266
[22] Zhixing Hu, Sheng Liu and Hui Wang, Backward bifurcation of an epidemic model with standard incidencerate and treatment rate, Nonlinear Analysis, RealWorld Applications, 2008, (9), 2302-2312(SCI). Q1, 影响因子 2.519
[23] Zhixing Hu, Yang Yu, Wanbiao Ma, The analysis of two epidemic models with constant immigration and quarantine, Rocky Mountain Journal of Mathematics, 2008, 38(5), 1421-1436(SCI). Q4, 影响因子 0.399
[24] Xiaowei Cheng, Zhixing Hu, Wanbiao Ma, Global Stability of an Epidemic Model With General Incidence Rate, 第六届生物数学会议, 2008, 611-615(ISTP)
[25] Zhixing Hu, Yongchnag, Fu, Wanbiao, Ma, Hui Wang, Analysis of a Predator-Prey XSI Model with Epidemic in the Prey, 第六届生物数学会议, 2008, 200-206(ISTP).
[26] 朱婧-胡志兴,王辉, 浅谈数学建模思想在大学数学教学中应用, 2011 International Conference on Applied Social Science, 2011.3,147-150. CPCI-SSH.
[27] Zhu Jing, Zhengn Liancun and Hu Zhixing, The Teaching Methods of Calculus, 2011 International Conference on Control, Automation and Systems Engineering (CASE), 2011.7, Singapore, 3,301-304.
[28] 陈晓云,胡志兴, 一类具有非线性传染率的阶段结构传染病模型,数学的实践与认识, 2009.4, 39(7), 118-123.
[29] 胡志兴, 陈小伟, 马万彪, Analysis of an SIS Epidemic Model with Temporary Immunity and Nonlinear Incidence Rate, 工程数学学报, 2009.5, 26(3), 407-415.
[30] 刘祥东,王辉,胡志兴,马万彪. 一类具有时滞和治愈率的HIV病理模型的稳定性, 生物数学学报, 2011, 26(1), 108-116.
[31] 冀铁果,胡志兴, 田立勤, 孙锦霞, 可信网络中基于AHP的用户行为评估性质及应用, 计算机安全, 2007.12, 1-3.
[32] 成小伟, 胡志兴, 具有垂直传染和预防接种的SIVR模型的研究, 科学技术与工程, 2008, 8(15), 4051-4054.
[33] 刘芳, 胡志兴, 一类具有阶段结构的 SIS传染病模型的稳定性, 科学技术与工程, 2008, 8(12), 3277-3280.
[34] 成小伟, 胡志兴,具有常数移民和急慢性阶段的 SIS模型的研究, 北京工商大学学报, 2008, 26(1),75-79.
[35] 徐岩, 胡志兴, 数学建模与高等数学的互惠互补, 科技资讯, 2008年8月, 104-106
[36] 倪春青,胡志兴, 一类具有常数收获率的具有功能性反应捕食模型的定性分析,重庆工商大学学报,2010, 27(3),235-239.
[37] 任艳芳,胡志兴,具有分布时滞的SIQS传染病模型的分析,山西师范大学学报,2010, 24(3), 18-22
[38] 薛莲, 胡志兴. 具有常数投放率的一类食饵-捕食者两种群模型的定性分析, 北华大学学报, 2010,11(2), 105-109
[39] 任颜芳, 胡志兴. 具有分布时滞的SIQS传染病模型的分析, 山西师范大学学报, 2010年9月, 24(3), 18-22.
[40] 高杏杏,胡志兴, 廖福成,一类双时滞食饵-捕食者模型的Hopf分支,西安理工大学学报,2016年1月,32(1):100-105
[41] 陈利君,胡志兴,廖福成,具有Beddington-DeAngelis发生率,垂直感染和时滞的SEIRS模型稳定性分析, 安徽师范大学学报,2016年2月. 2016, 39(1):26-32.
[42] 高杏杏,胡志兴, 廖福成,一类扩散的食饵-捕食模型 ,陕西师范大学学报(自然科学版),2016年5月, 44(3):17-21.
[43] 王辉,侯文涛,胡志兴,廖福成,具有饱和发生率的HIV/AIDS模型的稳定性分析,安徽大学学报(自然科学版) , 2016年1月, 40(1):18-22
[44] 李冰,王辉,胡志兴,廖福成, 具有双时滞的比例依赖型捕食系统的Hopf分支分析,西北大学学报(自然科学版),2015年12月, 45(6):861-868
[45] 聂文静,王辉,胡志兴, 一类具有时滞和随机项的捕食-被捕食模型 ,河南科技大学学报,2015年12月, 36(6):75-81.
[46] 刘杰,胡志兴,廖福成, 随机模型SIRS的定性分析,宁夏大学学报,2016年3月,37(1):1-6.
[47] 侯文涛,王辉,胡志兴,廖福成, 具有治疗和疫苗接种的SVIR模型的稳定性分析 , 郑州大学学报,2015年12月,47(4):38-42
[48] 王宏伟,胡志兴,孙德顺,一类计算机病毒模型的稳定性及分支分析 ,河南科技大学学报, 2015年2月, 36(1):43-47
[49] 程贝贝, 胡志兴, 廖福成,具有潜伏期和饱和CTL增长率的病毒感染模型的稳定性分析,中北大学学报, 2016.37(4), 335-339. 2016年8月.
[50] 李冰,王辉,胡志兴,廖福成,具有第Ⅳ类功能反应函数的捕食系统,河南大学学报,2016, 46(5):618-625, 2016年9月.
[51] 程贝贝,胡志兴,廖福成,具有Beddington-DeAngelis发生率和免疫损害项的带时滞的病毒感染模型的稳定性分析,黑龙江大学学报, 2016年6月,33(3): 281-290
[52] 程贝贝,胡志兴,廖福成,具有非线性发生率和时滞的HIV感染模型分析,河南师范大学学报,2015年1月,43(6):16-24
[53] 刘杰,胡志兴,廖福成,SEIQR流行病模型的定性分析,黑龙江大学学报,2015年8月, 32(4):439-447.
[54] 商宁宁,王辉,胡志兴,廖福成;一类具有饱和发生率和饱和治愈率的SIR传染病模型的分支分析,昆明理工大学学报,2015年6月,40(3):139-148
[55] 陈利君; 胡志兴; 廖福成; 具时滞和细胞免疫的HIV-1模型稳定性分析,扬州大学学报,2015年11月,18(4):19-23.