当前位置: X-MOL首页全球导师 国内导师 › 王伟宗

个人简介

王伟宗,男,中共党员,山东淄博人,生于1984年4月,现为北京航空航天大学宇航学院教授,博士生导师,宇航学院院长,先进空间推进与能源课题组负责人。兼任北京航空航天大学校务委员会委员、军委科技委某专家组成员、分布式电推进飞行器控制技术湖南省重点实验室副主任、中国空天动力联合会电推进技术专委会委员、中国电工技术学会等离子体及应用专委会委员、中国宇航学会航天产业化工作委员会委员等。现为学校重大项目跨学院研究所“空天飞行器技术研究所”的核心成员,亚太空间合作组织大学小卫星项目常务副总指挥、某高空高速靶标型号主任设计师。担任国际期刊Journal of Physics D: Applied Physics国际顾问委员会委员以及Space: Science & Technology、《中国空间科学技术》、《气体物理》等期刊编委、Plasma Science & Technology和Sustainability客座编辑。 2003-2007年在西安交通大学电气工程及其自动化专业学习获得工学学士和经济学学士学位。2007-2013年在西安交通大学电气工程专业学习获得工学博士学位,学位论文获得西安交通大学优秀博士学位论文和陕西省优秀博士学位论文。在此期间受中英双博士联合培养项目和国家留学基金委公派留学生出国项目资助,同时获得利物浦大学电机工程与电子学哲学博士学位。2013年8月至2015年5月,进入中国航天科技集团公司钱学森空间技术实验室工作,担任特聘研究员。2015年6月获得欧盟研究委员会玛丽·居里学者基金资助(该基金在国际上享有很高的声誉,是欧盟资助个人科研的最高奖项之一),在比利时安特卫普大学从事博士后研究工作(合作导师为欧洲科学院院士Annemie Bogaerts教授)。2018年入选国家级青年人才项目,进入北京航空航天大学宇航学院宇航推进系工作,主要从事航天器空间电推进原理、智变火箭发动机技术、等离子体辅助能源转化与利用等的教学与科研工作。 迄今为止,在Fuel、ChemSusChem、Plasma Sources Sci. Technol.等国际重要学术期刊上发表SCI索引论文60余篇(第一/通讯作者论文40篇),其中精选/亮点/VIP/特色文章8篇,2篇论文被选为期刊封面,1篇论文获得英国皇家物理学会“中国高被引用论文奖”,研究工作得到比利时最高级别报纸De Standaard、Advances in Engineering等多家国际媒体的关注和报道。已获国家发明专利授权10项,申请10项,其中参与完成的一项专利实现成果转换和产业应用,荣获中国国家专利优秀奖。主持欧盟研究委员会玛丽•居里学者基金、宇航动力专项、国家自然科学基金面上基金及青年科学基金、北京市自然科学基金、国家重点实验室开放基金以及航天科研院所等十几项课题。其中,主持的国家自然科学基金青年科学基金项目获得优秀结题。在国际、国内学术会议和论坛上做特邀报告三十余次,并获得2018亚太等离子体和太赫兹国际会议杰出论文奖和中国电推进学术研讨会以及中国“高电压与放电等离子体”学术会议优秀论文奖。 教学与人才培养方面,自2018年进入北航工作以来,担任研究生科学素养课程《文献检索与科技论文写作》、《科学研究方法论》、研究生核心课程《等离子体物理基础》及北航研究生精品课程《航天工程实践讲堂》的课程负责人以及参与讲授研究生专业核心课程《电推进技术》、本科生课程《Office Hours》以及高等理工学院《交叉前沿综合课》,是飞行器动力工程本科专业课程《火箭发动机原理》教学团队的核心成员。指导本科生参与科技创新实践与研究性学习,是两项国家大学生创新创业训练计划项目的指导教师,指导学生获得北京市、北京航空航天大学优秀本科毕业设计、校级优秀硕士学位论文以及首届全国航空航天类专业本科毕业设计大赛特等奖、京津冀本科毕业设计大赛二等奖(一等奖仅1人)与三等奖、北航“冯如杯”创意大赛特等奖2项。荣获北航优秀生产实习指导教师一等奖,本科生优秀导师,作为团队成员指导学生开展大型综合项目“北航4号”临近空间火箭动力飞行器发射成功,荣获第七届中国国际“互联网+”大学生创新创业大赛全国总决赛金奖,人才培养举措获得校级优秀教学成果特等奖、二等奖各一项。 研究团队所在学科“航空宇航科学技术”为全国排名第一的双一流学科,拥有国际最先进的高真空羽流实验系统和现代化宇航推进实验平台,可提供研究工作所需的诸多先进诊断仪器(探针系统、光学诊断系统等),所属航天推进仿真中心具有万亿次并行计算集群,将为开展大规模的计算及数据处理提供硬件平台。热烈欢迎优秀的青年学者到先进空间推进与能源课题组从事博士后研究,鼓励申请境外博士后职位,试行双博士后制度,境内境外联合培养。欢迎具有创新意识和钻研精神的同学到课题组开展研究生阶段的学习和本科阶段的科研创新训练,对于表现良好的学生,课题组将以科研补贴/团队奖金等多种形式给予充分的补助。为硕士生/博士生提供每年1-2次国内交流的机会,为博士生提供每两年1次的国际访问机会,由课题组负责相关费用。 教育经历 2010.10 -- 2013.7 利物浦大学 电机工程与电子学 博士研究生毕业 博士学位 2007.9 -- 2013.7 西安交通大学 电气工程 博士研究生毕业 博士学位 2003.9 -- 2007.7 西安交通大学 电气工程及其自动化/经济学 大学本科毕业 工学和经济学双学位 工作经历 2015.5 -- 2018.5 安特卫普大学 化学系 博士后 2018.5 -- 至今 北京航空航天大学 宇航学院 教授 2013.8 -- 2015.5 中国航天科技集团公司 钱学森空间技术实验室 工程师/特聘研究员

研究领域

航天发展,动力先行。王伟宗教授着眼国家航天动力重大战略需求,主要从事航天器空间电推进原理及其应用、基于人工智能的航天发动机智能状态监测与故障诊断、等离子体辅助空间能源转化和物质利用等方面的研究工作。 1. 航天器空间电推进原理及其应用:空间电推进利用电能加热或电离推进剂加速工质形成高速射流喷出而产生推力推进航天器飞行,具有低成本、高比冲、推力小、控制精度高等优点,目前在GEO卫星位置保持和轨道转移、深空探测主推进、科学观测和试验等领域有着广泛的应用,也是未来空间探索的先进推进技术之一。 2. 等离子体放电辅助空间能源转化和物质利用:利用地外天体丰富的本地能源(如太阳能或风能等)产生放电等离子体,协同高性能催化剂辅助实现二氧化碳、甲烷或氮气等原位物质转化生成深空探测地外生存必需的高品质产品;利用放电等离子体技术实现发动机用燃料的有效重整,提高燃料的燃烧性能(高热值)。 3. 航天发动机状态监测与故障诊断:利用传感器等多样化的信号采集手段对航天发动机的工作运行状态进行数据采集、分析处理从而对复杂态势进行感知与监测,发展基于人工智能技术的航天发动机工作故障分析方法。

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

A Bogaerts, Q Z Zhang, Y R Zhang, K V Laer, W Z Wang. Burning questions of plasma catalysis: Answers by modeling 2019 Catalysis Today 337 3-14. S F Shang, S H Xiang, L X Jiang, W Z Wang, B J He, H Y Weng. Sputtering distribution of LIPS200 ion thruster plume 2019 Acta Astronautica 160 7-14. T Chen, W Z Wang#. Modeling of combustion and hydrodynamics for a coal-fired supercritical boiler with double-reheat cycle 2019 International Journal of Numerical Methods for Heat & Fluid Flow, DOI:10.1108/HFF-08-2018-0456. G Trenchev, A Nikiforov, W Z Wang, Atmospheric pressure glow discharge for CO2 conversion: Model-based exploration of the optimum reactor configuration 2019 Chemical Engineering Journal 362 830-841. T Chen, Y J Zhang, M Liao, W Z Wang#. Coupled modeling of combustion and hydrodynamics for a coal-fired supercritical boiler 2019 Fuel 240 49-56. A Bogaerts, R Snoeckx, G Trenchev, W Z Wang, Modeling for a Better Understanding of Plasma-Based CO2 Conversion 2018 Plasma Chemistry and Gas Conversion, Book chapter, IntechOpen. R Snoeckx, W Z Wang#, X M Zhang, M S Cha, A Bogaerts, Plasma-based multi-reforming for Gas-To-Liquid: tuning the plasma chemistry towards methanol 2018 Scientific reports 8 15929. (Co-First author) H Zhang, L Li, X D Li, W Z Wang, J H Yan, X Tu, Warm plasma activation of CO2 in a rotating gliding arc discharge reactor 2018 Journal of CO2 Utilization 27 472-479. J Shah, W Z Wang, A Bogaerts, and M L Carreon, Ammonia Synthesis by Radio Frequency Plasma Catalysis: Revealing the Underlying Mechanisms 2018 ACS Applied Energy Materials 1 4824-4839. Co-First author) Y F Zhao, C Wang, W Z Wang, L Li, H Sun, T Shao, J Pan, Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure 2018 Acta Physica Sinica -Chinese Edition 67 085202 Q Z Zhang, W Z Wang, A Bogaerts, Importance of surface charging during plasma streamer propagation in catalyst pores 2018 Plasma Sources Science and Technology 27 065009. (Co-first author) W Z Wang, A Berthelot, Q Z Zhang, A Bogaerts. Modelling of plasma-based dry reforming: how do uncertainties in the input data affect the calculation results? 2018 J. Phys. D: Appl. Phys 51 204003. H Zhang, W Z Wang, X D Li, L Han, M Yan, Y J Zhong, X Tu, Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma: A chemical kinetics study 2018 Chemical Engineering Journal 345 67-78. (Co-first author) W Z Wang, S Ramses, X M Zhang, M S Cha, A Bogaerts. Modeling plasma-based CO2 and CH4 conversion in mixtures with N2, O2, and H2O: the bigger plasma chemistry picture 2018 The Journal of Physical Chemistry C 122 8704-8723. W Z Wang, H H Kim, K V Laer, A Bogaerts, Streamer propagation in a packed bed plasma reactor for plasma catalysis applications 2018 Chemical Engineering Journal 334 2467-2479. (This article is selected as ESI Highly Cited Paper in 2019.) G Trenchev, S Kolev, W Z Wang, M Ramakers, A Bogaerts, CO2 conversion in a gliding arc plasmatron: Multidimensional modeling for improved efficiency 2017 The Journal of Physical Chemistry C 121 24470-24479. H Y Wang, W Z Wang, J D Yan, H Y Qi, J Y Geng and Y W W, Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications 2017 J. Phys. D: Appl. Phys. 50 395204. (Corresponding author) W Z Wang, D H Mei, X Tu, A Bogaerts, Gliding arc plasma for CO2 conversion: Better insights by a combined experimental and modelling approach 2017 Chemical Engineering Journal 330 11–25. W Z Wang, B S Patil, S Heijkers, V Hessel, A Bogaerts, Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling 2017 ChemSusChem 10 2145–2157. (This article has been designated as a very important paper by this prestigious journal (the top 5%) and selected as the front cover of the journal as the results are of high scientific quality. ) M Ramakers, G Trenchev, S Heijkers, W Z Wang and A Bogaerts, Gliding arc plasmatron: providing an alternative method for carbon dioxide conversion 2017 ChemSusChem 10 2642–2652. A Bogaerts, A Berthelot, S Heijkers, S Kolev, R Snoeckx, S Sun, G Trenchev, K Van Laer and W Z Wang, CO2 conversion by plasma technology: Insights from modeling the plasma chemistry and plasma reactor design (Invited review) 2017 Plasma Sources Sci. Technol. 26 063001 . L H Kong, W Z Wang, A B Murphy, G Q Xia, Numerical analysis of direct-current microdischarge for space propulsion applications using the Particle-In-Cell/Monte Carlo Collision (PIC/MCC) method 2017 J. Phys. D: Appl. Phys. 50 165203. (Co first author). W Z Wang, L H Kong, J Y Geng, F Z Wei, G Q Xia, Wall ablation of heated compound-materials into non-equilibrium discharge plasmas 2017 J. Phys. D: Appl. Phys. 50 074005. W Z Wang, A Berthelot, S Kolev, X Tu, A Bogaerts, CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model 2016 Plasma Sources Sci. Technol. 25 065012. (This article is the first article which reveals the undying plasma chemistry of gliding arc based CO2 conversion by taking into account the detailed chemical kinetics.) W Z Wang, A Bogaerts, Effective ionisation coefficients and critical breakdown electric field of CO2 at elevated temperature: effect of excited states and ion kinetics 2016 Plasma Sources Sci. Technol. 25 055025. (This paper has been honorably designated by the editor as a Featured article and highlighted by being selected as an invited LabTalk by this leading journal in plasma physics due to its high scientific quality, http://iopscience.iop.org/journal/0963-0252/labtalk/article/66507.) S Kolev, S Sun, G Trenchev, W Z Wang, H Wang, Quasi‐neutral modeling of gliding arc plasmas 2016 Plasma Process. Polym., DOI: 10.1002/ppap.201600110. A Bogaerts, W Z Wang, A Berthelot, V Guerra, Modeling plasma-based CO2 conversion: crucial role of the dissociation cross section 2016 Plasma Sources Sci. Technol. 25 055016. Wang W Z, Rong M Z, Wu Yi, et al., Fundamental properties of high temperature SF6 mixed with CO2 as replacement for SF6 in high-voltage circuit breakers 2014 J. Phys. D: Appl. Phys. 47 255201. Wang W Z, Rong M Z, Wu Yi, Transport coefficients of high temperature SF6–He mixtures used in switching applications as an alternative to pure SF6 2014 Plasma Chem. Plasma Process. 34 899–916. Wang W Z, Wu Y, Rong M Z. Influence of ablated PTFE vapour entrainment on critical dielectric strength of hot SF6 gas 2014 IEEE Trans. Dielectr. Electr. Insul. 21 1478-1485. Y Wu, W Z Wang, M Z Rong, L L Zhong. Prediction of critical dielectric strength of hot CF4 gas in the temperature range of 300-3500K 2014 IEEE Trans. Dielectr. Electr. Insul. 21 129-131. (Corresponding author). (This article is selected as ESI Highly Cited Paper in 2015.) W Z Wang, M Z Rong, J W Spencer, Transport coefficients of high temperature SF6 in local thermodynamic equilibrium using a phenomenological approach 2014 Chinese Physics Letter, 31, 035202. W Z Wang, J D Yan, M Z Rong, A B Murphy, J W Spencer, Theoretical investigation of the decay of an SF6 gas-blast arc using a two-temperature hydrodynamic model 2013 J. Phys. D: Appl. Phys 46 065203. W Z Wang, J D Yan, M Z Rong, A B Murphy, Y Wu, J W Spencer, Investigation of SF6 arc characteristics under shock condition in a supersonic nozzle with hollow contact 2013 IEEE Trans. Plasma Sci. 41 915-28. W Z Wang, A B Murphy, M Z Rong, H M Looe, J W Spencer, Investigation on critical breakdown electric field of hot sulfur hexafluoride/carbon tetrafluoride mixtures for high voltage circuit breaker applications 2013 J. Appl. Phys. 114 103301. W Z Wang, M Z Rong, J W Spencer, Nonuniqueness of two-temperature Guldberg-Waage and Saha equations: Influence on thermophysical properties of SF6 plasmas 2013 Phys. Plasmas 20 113504. W Z Wang, X Tu, D H Mei, M Z Rong, Dielectric breakdown properties of hot SF6/He mixtures predicted from basic data 2013 Phys. Plasmas 20 113503. W Z Wang, M Z Rong, Y Wu , J W Spencer, J D Yan, D H Mei, Thermodynamic and transport properties of two-temperature SF6 plasmas 2012 Phys. Plasmas 19 083506 . W Z Wang, M Z Rong, J D Yan, Y Wu, The reactive thermal conductivity of thermal equilibrium and non equilibrium plasmas: application to nitrogen 2012 IEEE Trans. Plasma Sci. 40 980-989. W Z Wang, Y Wu, M Z Rong, F Yang, Theoretical computation studies for transport properties of air plasmas 2012 Acta Phys. Sin. 61 105201. W Z Wang, Y Wu, M Z Rong, L éhn, I ?ernu?ák, Theoretical computation for thermophysical properties of high temperature F2, CF4, C2F2, C2F4, C2F6, C3F6 and C3F8 plasmas 2012 J. Phys. D: Appl. Phys. 45 285201. W Z Wang, J D Yan, M Z Rong, A B Murphy, J W Spencer, Thermophysical properties of high temperature reacting mixtures of carbon and water in the range 400–30,000 K and 0.1–10 atm. part 2 transport coefficients 2012 Plasma Chem. Plasma Process. 32 495-518. W Z Wang, A B Murphy, J D Yan, M Z Rong, J W Spencer, M T C Fang, Thermophysical properties of high-temperature reacting mixtures of carbon and water in the range 400–30,000 K and 0.1–10 atm. part 1 equilibrium composition and thermodynamic properties 2011 Plasma Chem. Plasma Process. 32 75–96. W Z Wang, M Z Rong, A B Murphy, Y Wu, J W Spencer, J D Yan, M T C Fang, Thermophysical properties of carbon–argon and carbon–helium plasmas 2011 J. Phys. D: Appl. Phys. 44 355207. W Z Wang, M Z Rong, J D Yan, A B Murphy, J W Spencer, Thermophysical properties of nitrogen plasmas under thermal equilibrium and non-equilibrium conditions 2011 Phys. Plasmas 18 113502 . F Yang, M Z Rong, Wu Y, A B Murphy, W Z Wang, J Guo, Simulation of arc characteristics in miniature circuit breaker 2010 IEEE Trans. Plasma Sci. 38 2306-2311. Y Wu, M Z Rong, F Yang, XH Wang, Q Ma, W Z Wang, Introduction of 6-band P-1 radiation model for numerical analysis of three-dimensional air arc plasma 2008 Acta Phys. Sin. 57 5761-7.

学术兼职

2016.12 -- 至今 IOP出版集团旗下期刊Journal of Physics D: Applied Physics国际顾问委员会委员 2020.5 -- 至今 《中国空间科学技术》编委 2019.5 -- 至今 《气体物理》期刊编委 2020.5 -- 至今 北京热物理与能源工程学会理事 2019.4 -- 至今 中国电推进技术研讨会学术委员会委员 2019.5 -- 至今 中国电工技术学会青年工作委员会委员

推荐链接
down
wechat
bug