当前位置: X-MOL首页全球导师 国内导师 › 王鹏

个人简介

教育经历 2007.9-2011.6 美国加州大学圣迭戈分校 计算科学专业 博士 博士研究生毕业 计算科学专业 2007.9-2010.6 美国加州大学圣迭戈分校 工程科学 硕士 硕士 工程科学专业 2003.9-2007.6 英国杜伦大学 机械工程 硕士 硕士 通用工程,本硕连读(一等荣誉) 工作经历 2020.3-至今 微电子学院 北京航空航天大学 教授 2014.3-2020.3 数学科学学院 北京航空航天大学 教授 2013.4-2013.12 计算数学组 美国太平洋西北国家实验室 研究员 2011.8-2013.3 计算数学组 美国太平洋西北国家实验室 博士后 2002.9-2003.8 外国语言系 英国昂顿公学 教师 社会兼职 2020.1-至今 《Journal for Machine Learning for Modeling and Computing》期刊编委 2015.5-至今 《International Journal for uncertainty quantification》期刊编委

研究领域

我们的团队专注于开发高效数值框架,以对含不确定性的自然与工程系统状态进行量化分析,例如集成电路自动化设计、环境流体与传输、太阳能、材料基因工程、多孔介质、生物系统以及药物传输机理。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

A new multi-task learning framework for fuel cell model outputs in high-dimensional spaces.[期刊]:Journal of Power Sources,2020,482:228930 Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis.[期刊]:Renewable and Sustainable Energy Reviews,2020,135:110087 Resources-constrained model selection for uncertainty propagation and data assimilation.[期刊]:SIAM/ASA Journal on Uncertainty Quantification,2020,8(3):1118-1138 irradpy: Python package for MERRA-2 download, extraction and usage for clear-sky irradiance modelling.[期刊]:Solar Energy,2020,199:685-693 Bright-Sun: A globally applicable 1-min irradiance clear-sky detection model.[期刊]:Renewable and Sustainable Energy Review,2020,121:109706 Quantification of predictive uncertainty in models of FtsZ ring assembly in Escherichia coli.[期刊]:Journal of Theoretical Biology,2020,484:110006 Data assimilation for models with parametric uncertainty.[期刊]:Journal of Computational Physics,2019,396:785-798 Worldwide performance assessment of 75 global clear-sky irradiance models using Principal Component Analysis.[期刊]:Renewable and Sustainable Energy Reviews,2018,111:550-570 A new method for an old topic: Efficient and reliable estimation of material bulk modulu.[期刊]:Computational Materials Science,2019,165:7-12 An Efficient Solver for Cumulative Density Function-based Solutions of Uncertain Kinematic Wave Models.[期刊]:Journal of Computational Physics,2019,382:138-151 Uncertainty quantification on macroscopic properties of random porous media.[期刊]:Physical Review E,2018,98(3):033306 Incorporating ground measured pollution observations to improve temporally downscaled solar irradiance simulations.[期刊]:Solar Energy,2018,171:293-301 Sequential data assimilation with multiple nonlinear models and applications to subsurface flow.[期刊]:Journal of Computational Physics,2017,346:356-368 Software reliability growth model with temporal correlation in a network environment,.[期刊]:International Journal for Uncertainty Quantification,2016,6(2):141-156 Uncertainty quantification of scientific proposal evaluations.[期刊]:International Journal for Uncertainty Quantification,2016,6(2):167-173 Probabilistic density function method for stochastic ODEs of power systems with uncertain power input.[期刊]:SIAM/ASA Journal on Uncertainty Quantification,3(1):873-896 PDF method for dynamic system with colored noise.[期刊]:Physical Review Letters,2013,110(14):140602 CDF solutions of Buckley-Leverett equation with uncertain parameters.[期刊]:SIAM Journal of multiscale modeling and simulation,2013,11(1):118-133 Uncertainty quantification in kinematic-wave models.[期刊]:Journal of Computational Physics,2012,231(23):7868-7880 Reduced complexity models for probabilistic forecasting of infiltration rate,.[期刊]:Advances in Water Resources,2010,34(3):375-382 Probabilistic predictions of infiltration into heterogeneous media with uncertain hydraulic parameters.[期刊]:Internal Journal for Uncertainty Quantification,2010,1(1):35-47 Effects of spatio-temporal variability of precipitation on contaminant migration in the vadose zone.[期刊]:Geophysical Research Letters,2009,36(12):L2404

推荐链接
down
wechat
bug