当前位置: X-MOL首页全球导师 国内导师 › 张世金

个人简介

教育背景 2001.9-2005.6 南开大学数学基地班 学士 2005.9-2010.6 南开大学陈省身数学研究所 博士 导师:方复全教授 2008.9-2010.3 UCSD(国家公派联合培养) 导师:倪磊(Lei Ni)教授 2010.7-2012.10 北京大学北京国际数学研究中心 博士后 合作导师:朱小华教授 工作简历 2012.10-至今 北京航空航天大学 讲师 所获奖励 2012年北航“蓝天新秀”

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Some De Lellis-Topping type inequalities on the smooth metric measure space (with Meng Meng), Front. Math. China, 13(2018), 147-160. Liouville-type theorems on the complete gradient shrinking Ricci solitons (with Huabin Ge), Differential Geometry and its applications, 56(2018), 42-53. A gap theorem on complete shrinking gradient Ricci solitons, Proc. Amer. Math. Soc. 146(2018), 359-368. The Kaehler-Ricci flow on Fano bundles (with Xin Fu), Math. Z, 286(2017), 1605-1626. Volume growth of shrinking gradient Ricci-harmonic soliton (with Guoqiang Wu), Results ?Math. 72(2017), 205-223. Three-dimensional discrete curvature flows and discrete Einstein metrics (with Huabin Ge and Xu Xu), Pacific. Jour. Math., 287 (2017), No.1, 49-70. Remarks on shrinking gradient Kaehler-Ricci solitons with positive bisectional curvature (with Guoqiang Wu) , Comptes Rendus Mathematique, 354 (2016), 713-716. A theorem of Ambrose for Bakry-Emery Ricci tensor, Ann. Glob. Anal. Geom., Vol(45), 2014, 233-238. Perelman's entropy and Kaehler-Ricci flow on a Fano manifold(with Gang Tian, Zhenlei Zhang and Xiaohua Zhu), ?Trans. AMS., Vol(365), No. 12, 2013, 6669-6695. On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded from below, Acta Math. Sinica, English series, Vol(27), No. 5, 2011, 871-882. The convergence of the positive minimal fundamental solutions under Ricci flow, ?Proc. AMS, Vol(138), No. 3, 2010, 1121-1129.

推荐链接
down
wechat
bug