研究领域
主要研究领域为偏微分方程及变分问题 PDE and calculus of variations. 目前在Morrey猜想相关的秩凸刻画, Poincaré电磁动力系统 (1905 Palermo问题)非极小轨道存在性, 最优运输的高效计算等经典问题中做出重要工作
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Y. Ruan. A convergence result related to the geometric flow of motion by principal negative curvature. Arch. Math., 2020, https://doi.org/10.1007/s00013-020-01446-3.
Y. Ruan. A tale of two approaches to heteroclinic solutions for Φ-Laplacian systems. Proc. Roy. Soc. Edinburgh Sect. A, 2019, https://doi.org/10.1017/prm.2019.33.
A. Oberman, Y. Ruan. Solution of Optimal Transportation Problems Using a Multigrid Linear Programming Approach. J. Comput. Math., 2019, doi:10.4208/jcm.1907-m2017-0224.
A. Oberman, Y. Ruan. A partial differential equation for the rank one convex envelope. Arch. Ration. Mech. Anal., 2017, Volume 224, Issue 3, pp 955–984.
Y. Ruan. Heteroclinic solutions for the extended Fisher–Kolmogorov equation. J. Math. Anal. Appl., Volume 407, Issue 1, 1 November 2013, Pages 119-129.