当前位置: X-MOL首页全球导师 国内导师 › 舒永录

个人简介

基本信息 舒永录,博士 教育背景 1981-1985 四川大学数学系数学专业本科 1985-1986 北京第二外国语学院进修英语(陈省身出国项目) 1986-1989 四川大学数学系非线性泛函分析硕士 1997-2005 重庆大学电气工程学院在职博士 科研项目 [1]分形几何的理论及应用研究(713411003,重庆大学基础及应用基础基金),第一主研 [2]数学与应用数学专业人才培养方案及课程体系改革的研究与实践(重庆大学教改项目),第四主研 [3]超混沌同步理论及应用研究(重庆大学基础及应用基础基金)项目负责人 [4] N-体问题的中心构型及动力系统的分支理论(1022320070001,国家自然科学基金面上项目数学物理科学部)第一主研 [5]正则线性系统的容许扰动性及其在弹性振动系统的小时滞鲁棒稳定性上的应 用(1020708920090224,重庆市科委自然科学基金计划面上项目)第一主研 [6]数学与应用数学特色专业建设点(重庆大学教改项目)第三主研 [7]重庆大学在类系列课程建设项目:数学专业核心系列课程建设(重庆大学教改项目)第四主研 [8]发展方程的同宿轨分岔与次调和分岔(国家自然科学基金),第三主研 [9]乘法算子,Hankel算子,Toeplitz算子及Toeplitz代数(重庆市自然科学基金重点项目0236022321001)第一主研 [10]算子理论、算子代数及其应用(国家自然科学基金236022432001),第二主研 主讲课程 本科生课程 高等数学、复变函数、线性代数、数学物理方程、常微分方程、泛函分析、模糊数学,高等代数与解析几何,数学思维与数学文化 研究生课程 应用泛函分析、泛函分析、矩阵论、非线性泛函分析、动力系统、混沌动力系统的控制与同步。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

主要成果 1. 张石生,舒永录, 多值映象的变分不等式及对非线性规划和鞍点问题的应用, 应用数学学报,1991. 2. 张石生,舒永录,相补问题及其对数学规划的应用,应用数学学报,1992 . 3. 舒永录 不具强制性条件的Hammerstein积分方程的解,重庆大学学报,1996. 4. 舒永录 集值映射锐角原理在变分不等式中的应用,重庆大学学报,1996. 5. Yonglu Shu The solution Hammerstein integral equation with out coercive conditions Progeedings of the Conference on Nonlinear Partial Differential Equations and Applications Word Scientific 1997. 6. Yonglu Shu, Bangding Tan , Chuandong Li. Control of Chaotic n-dimensional Continuous-time System with Delay ,Physics Letters A 323 (2004) 251–259. 7. Shu yonglu, Tan Bangding. Lag Synchronization based on Nonlinear observer design for delay system,2004 International Conference on Communications, Circuits and Systems . Chengdu, China. IEEE.1396-1400. 8. Yonglu Shu, Anbang Zhang, Bangding Tang. Switching among three different kinds of synchronization for delay chaotic systems. Chaos, Solitons and Fractals 23 (2005) 563–571. 9. Shu Yonglu, Tan Bangding Synchronization for a class of delay system Journal of Chongqing University (English Edition) 2004. 10. Yonglu shu, Chaotifing linear hyperbolic system of partial differential equations by nonlinear boundary reflection, Nonlinear Analysis TMA (July 2007). 11. Fuchen Zhang, Yonglu Shu, Hongliang Yang, Bounds for a new chaotic system and its application in chaos synchronization, Commun Nonlinear Sci Numer Simulat 16 (2011) 1501–1508. 12.Yonglu Shu, Hongxing Xu, Yunhong Zhao, Estimating the ultimate bound and positively invariant set for a new chaotic system and its application in chaos synchronization, Chaos, Solitons and Fractals 42 (2009) 2852–2857. 13.Fuchen Zhang, Yonglu Shu, Hongliang Yang, Xiaowu Li, Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization, Chaos, Solitons & Fractals 44 (2011) 137–144. 14.Chunlai Mu ,Fuchen Zhang , Yonglu Shu,Shouming Zhou,On the boundedness of solutions to the Lorenz-like family of chaotic systems,Nonlinear Dyn DOI 10.1007/s11071-011-0041-3. 15.Fuchen Zhang, Yonglu Shu, Hongliang Yang,Bounds for a new chaotic system and its application in chaos synchronization,Commun Nonlinear Sci Numer Simulat 16 (2011) 1501–1508. 16.Yonglu Shu , Xianfeng Zhao,Yunhua Zhou,The Conjugate Class of a Supercyclic Operator,Complex Anal. Oper. Theory (2012) 6:603–611. 17.Yushu Zhang, Di Xiao, Yonglu Shu, Jing Li,A novel image encryption scheme based on a linear hyperbolic chaotic system of partial differential equations,Signal Processing: Image Communication 28 (2013) 292–300. 18.Fuchen Zhang, Yonglu Shu,Global dynamics for the simplified Lorenz system model,Applied Mathematics and Computation 259 (2015) 53–60. 19.Yonglu Shu, Xingzhong Wang, Wei Wang,Hypercyclicity of the tensor products of multiplication operators on Hardy spaces,J. Math. Anal. Appl. 436 (2016) 1063–1073. 20.Yong Lu SHU,Xian Feng ZHAO,Positivity of Toeplitz Operators on Harmonic Bergman Space,Acta Mathematica Sinica, English Series Feb., 2016, Vol. 32, No. 2, pp. 175–186. 21.Y. Shu, W. Wang and X. Wang, Hypercyclic tuple of n × n upper trianglar Toeplitz matrices, to appear in Chinese Annals of Mathematics,2017. 22.Shu Yonglu,Wang wei and Wang Xingzhong, Mixing tuple of operators on Banach space, 1-15, 2016. 23.Yonglu Shu, Wei Wang, and Xianfeng Zhao, Backward Shifts on Double Sequence Spaces, Results Math 72 (2017), 793–811.

推荐链接
down
wechat
bug