个人简介
教育经历:
1982.09-1986.07 西安交通大学机械系,获学士学位
1986.09-1989.07 西安交通大学机械系(研究方向:机器人),获硕士学位
1990.09-1992.07 英国Strathclyde大学工业控制中心(研究方向:机器人控制),获硕士学位
1992.09-1995.07 英国De Montfort大学机电一体化中心(研究方向:人工智能和机器人),获博士学位
1996.09-1997.07 英国De Montfort大学计算机系(研究方向:信息工程),获硕士学位
工作经历:
1997-2000 香港城市大学,Assistant Professor
2002-2004 英国Manchester大学,Lecture(永久教职,博导)
2004.08-至今 中国科学院自动化研究所
2015.09-至今 中国科学院大学计算机与控制学院,“控制理论与控制工程”教研室,主任
2016.06-至今 北京科技大学机械工程学院
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
代表性论著:
Qiao, H., Li, Y. L., Li, F. F., Xi, X. Y. and Wu, W.(2016) Biologically Inspired Model for Visual Cognition Achieving Unsupervised Episodic and Semantic Feature Learning, IEEE Transactions on Cybernetics, 46(10): 2335-2347.
Qiao, H., Li, C., Yin, P.J., Wu, W., and Liu, Z. Y. (2016) Human-inspired motion model of upper-limb with fast response and learning ability - A promising direction for robot system and control, Assembly Automation, 36(1): 97-107.
Qiao, H.*, Xi, X. Y., Li, Y. L., Wu, W., Li, F. F. (2015) Biologically Inspired Visual Model with Preliminary Cognition and Active Attention Adjustment, IEEE Transactions on Cybernetics, 45(11): 2612-2624.
Qiao, H.*, Li, Y. L., Li, F. F., Xi, X. Y., Wu, W. (2015) Biologically Inspired Model for Visual Cognition - Achieving Unsupervised Episodic and Semantic Feature Learning, IEEE Transactions on Cybernetics, in press, DOI:10.1109/TCYB.2015.2476706
Qiao, H.*, Wang, M., Su, J. H., Jia, S. X., & Li, R. (2015). The Concept of "Attractive Region in Environment" and its Application in High-Precision Tasks With Low-Precision Systems. IEEE/ASME Transactions on Mechatronics, 20(5): 2311-2327.
Qiao, H.*, Li, Y. L., Tang, T., Wang, P. (2014) Introducing Memory and Association Mechanism Into a Biologically Inspired Visual Model. IEEE Transactions on Cybernetics, 44(9):1485-1496.
Qiao, H.*, Zhang, P., Di, W., & Zhang, B. (2013). An Explicit Nonlinear Mapping for Manifold Learning. IEEE Transactions on Cybernetics, 43(1): 51-63.
Qiao, H.*, Zhang, P., Zhang, B., & Zheng, S. W. (2011). Tracking feature extraction based on manifold learning framework. Journal of Experimental & Theoretical Artificial Intelligence, 23(1): 23-38.
Qiao, H.*, Zhang, P., Zhang, B., & Zheng, S. W. (2010). Learning an Intrinsic-Variable Preserving Manifold for Dynamic Visual Tracking. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 40(3): 868-880.
Qiao, H.*, Peng, J. G., Xu Z. B., Zhang, B. (2003) A reference model approach to stability analysis of neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 33(6): 925-936.
Nie, X. L., Qiao, H., Zhang, B. and Huang, X. Y. (2016) A Nonlocal TV-Based Variational Method for PolSAR Data Speckle Reduction, IEEE Transactions on Image Processing, 25(6): 2620-2634.
Wang, Z. D., Qiao, H. (2002) Robust filtering for bilinear uncertain stochastic discrete-time systems. IEEE Transactions on Signal Processing, 50(3): 560-567.
Xi, X. Y., Qin, Z. K., Ding, Qiao, H.* (2015) An Improved eLBPH Method for Facial Identity Recognition: Expression-Specific Weighted Local Binary Pattern Histogram, 2015 IEEE International Conference on Robotics an Biomimetics (best student paper), in press
Liu, C. K., Qiao, H.*, Su, J. H., & Zhang, P. (2014). Vision-Based 3-D Grasping of 3-D Objects With a Simple 2-D Gripper. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(5): 605-620.
Liu, Z. Y., Qiao, H. (2014). GNCCP - Graduated NonConvexity and Concavity Procedure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(6): 1258-1267.
Tang, T., Qiao, H.* (2014) Improving invariance in visual classification with biologically inspired mechanism. Neurocomputing, 133: 328-341.
Liu, C. K., Qiao, H.*, & Zhang, B. (2011). Stable Sensorless Localization of 3-D Objects. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 41(6): 923-941.
Qiao, H.* (2003). Two- and three-dimensional part orientation by sensor-less grasping and pushing actions: Use of the concept of 'attractive region in environment'. International Journal of Production Research, 41(14): 3159-3184.