当前位置: X-MOL首页全球导师 国内导师 › 王勇

个人简介

王勇,现为中科院数学与系统科学研究院副研究员。主要研究非线性双曲守恒律、可压缩Navier-Stokes方程、Boltzmann方程等方程的适定性和渐近行为。主要论文发表在“Adv.Math”、“Arch. Ration. Mech. Anal.”和“ SIAM J. Math. Anal.”等国际著名刊物上。 教育经历 2007.9-2012.7:中国科学院数学与系统科学研究院,理学博士 2003.9-2007.7:湖南师范大学,数学与应用数学系,理学学士 工作经历 2014.3-至今:中国科学院数学与系统科学研究院,助理研究员 2012.6-2014.3:中国科学院数学与系统科学研究院,特聘博士后 学术访问 2015.01-2015.03:香港中文大学数学系,Visiting Scholar 2014.05-2014.07:香港中文大学数学研究所, Visiting Scholar 2011.09-2012.01:香港城市大学数学系,Visiting Scholar 2010.07-2010.09:McGill University 数学与统计系,Visiting Scholar 部分国际邀请报告 1. The Sixth Japan-China Workshop on Mathematical Topics from Fluid Mechanics,2017年10月29-31日,日本大阪大学,邀请报告 2. Workshop on Analysis and Applications of PDEs, 2017年4月7-8日,香港理工大学,邀请报告 3. Workshop "Hilbert's Sixth Problem", 2016年5月2-4日,英国莱斯特大学,邀请报告 4. The Fifth China-Japan Workshop on Mathematical Topics from Fluid Mechanics,2015年11月17-22日,武汉大学,邀请报告 5. Eighth International Conference on Nonlinear PDEs and Their Numerical Analysis,2015年5月25-28日,杭州师范大学,邀请报告 6. International Workshop on PDEs in Fluid Dynamics and Related Models,2014年11月27-30日,上海交通大学,邀请报告 教学情况 中国科学院大学2017-2018年微积分I习题课 主持科研项目 1. 国家自然科学基金面上项目,Boltzmann方程大尺度解得整体适定性,批准号:11771429,2018.01-2021.12 2. 国家自然科学基金青年项目,可压缩Navier-Stokes方程和Boltzmann方程解的渐进行为,批准号:11401565,2015.01-2017.12

研究领域

可压缩Navier-Stokes方、Euler方程,Euler-Poisson方程等流体方程的适定性和渐近行为 Boltzmann方程的适定性和流体动力学极限

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

The Boltzmann equation with large-amplitude initial data in bounded domains Renjun Duan,Yong Wang, Advances in Mathematics. 343 (2019), 36–109. Global well-posedness of the relativistic Boltzmann equation Yong Wang, SIAM J. Math. Anal. 50 (2018), no. 5, 5637–5694. Uniform regularity for the free surface compressible Navier-Stokes equalities with or without surface tension Yu Mei, Yong Wang, Zhouping Xin, Math.Models Methods Appl.Sci. 28 (2018) , no.2,259-336. Global well-posedness of the Boltzmann equation with large amplitude initial data Renjun Duan, Feimin Huang, Yong Wang, Tong Yang, Arch.Ration.Mech.Anal.225(2017),no.1,375-424. Diffusive wave in the low Mach Limit for compressive Navier-Stokes equations Feimin Huang, Tian-Yi Wang, Yong Wang, Advances in Mathematics., 319(2017),348-395. Uniform Regularity and Vanishing Dissipation Limit for the Full Compressible Navier-Stokes System in Three Dimensional Bounded Domain Yong Wang, Arch.Rational Mech. Anal.(2016),no.3,1345-1415. The Limit of the Boltzmann Equation to the Euler Equations for Riemann Problems Feimin Huang, Yi Wang, Yong Wang, Tong Yang,SIAM J.Math.Anal.45(2013) no.3,1741-1811 Serrin-Type Blowup Criterion for Full Compressible Navier-Stokes System Xiangdi Huang, Jing Li, Yong Wang, Arch.Rational Mech. Anal, 207(2013),303-316. Long-time behavior of solutions for bipolar hydrodynamic model of semiconductors with boundary effects Feimin Huang, Ming Mei, Yong Wang, Tong Yang, SIAM J.Math.Anal.44 (2012) no.2,1134-1164. On the convergence Rate of Vanishing Viscosity Approximations for Nonliear Hyperbolic Systems Alberto Bressan, Feimin Huang, Yong Zhou, Tong Yang, SIAM J. Math.Anal, 44(2012) no.5,3537-3563. Planar traveling waves for nonlocal dispersion equation with monostable nonlinearity Rui Huang, Ming Mei, Yong Wang, Discrete Contin. Dyn.Syst,32(2012),no.10,3621-3649. Large-time behavior of solutions to n-dimensional bipolar hydrodynamical model of semiconductors Feimin Huang, Ming Mei, Yong Wang, SIAM J.Math.Anal. 43(2011),no.4,1595-1630. Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors Feimin Huang, Ming Mei, Yong Wang,Huimin Yu, SIAM J. Math.Anal.43(2011),no.1,411-429. On Multi-Dimensional Sonic-Subsonic Flow Feimin Huang,Tianyi Wang, Yong Wang, Acta Math.Sci. Ser.B engl.Ed, (2011) Vol.31(6): 2131-2140. Asymptotic convergence to planar stationary waves for multi-dimensional unipolar hydrodynamic model of semiconducts Feimin Huang, Ming Mei, Yong Wang, Huimin Yu, J.Differential Equations.251(2011) 1305-1331.

推荐链接
down
wechat
bug