个人简介
姓名
黄光鑫
职务
副系主任
出生年月
1976.11
最高学历
博士研究生
可带学生专业及数量
数学,3
教育背景及相关工作经历简介
教育背景
1.2008/09–2011/12,电子科技大学,应用数学,理学博士
2.2000/09–2003/06,重庆师范大学,运筹学与控制论,理学硕士
3.1996/09–2000/06,四川师范学院(现西华师范大学),数学教育,学士
工作经历
1.2017/08–2018/08,美国肯特州立大学,数学科学学院,访问学者
2.2016/09–2017/06,北京大学,数学科学学院,访问学者(教育部中西部高校骨干教师)
3.2014/08–2015/08,美国肯特州立大学,数学科学学院,访问学者(国家留基委资助)
4.2012/12–至今,成都理工大学,数学地质四川省重点实验室/信息与计算科学系,教授
5.2007/12–2012/12,成都理工大学,数学教学部/信息与计算科学系,副教授
6.2003/09–2007/12,成都理工大学,信息与计算科学系/,助教,讲师(2005/12-2007/12)
教学活动
课程名称
课程面向(本科生、研究生)
数值分析
本科
高等代数与解析几何
本科
线性代数
本科
数值分析
研究生
最优化理论与方法
研究生
科研项目
起止时间
项目名称
资助来源
2016/01-2018/12
一般l_p-l_q(0
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
科研成果(论文、专利、专著、教材等)
名称
级别
On the choice of subspace for large-scale Tikhonov regularization problems in general form
NumericalAlgorithms
(2019,SCI)
Regularization matrices for discrete ill-posed problems in several space-dimensions
Numer Linear Algebra Appl.(2018,SCI)
A majorization-minimization generalized Krylov subspace method for lp-lq image restoration
BIT Numerical Mathematics(2017,SCI)
Projected nonstationaryiterated Tikhonov regularization
BIT Numerical Mathematics(2016,SCI)
On the choice ofsolution subspace for nonstationary iterated Tikhonov regularization
NumericalAlgorithms
(2016,SCI)
Regularizationmatrices determined by matrix nearness problems
Linear Algebra and itsApplications(2016,SCI)
Finite iterative algorithms for solving generalized coupled Sylvester systems – Part I: One-sided and generalized coupled Sylvester matrix equations over generalized reflexive solutions
Applied Mathematical Modelling(2012,SCI)
An inverse eigenproblem and an associated approximation problem for generalized reflexive and anti-reflexive
Journal of Computational and Applied Mathematics
(2011,SCI)
Two-class support vector data description
Pattern Recognition
(2011,SCI)
Matrix inverse problem and its optimal approximation problem for R-skew symmetric matrices
Applied Mathematics and Computation(2010,SCI)
The lower and upper bounds on Perron root of nonnegative irreducible matrices
Journal of Computational and Applied Mathematics
(2011,SCI)
An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation
Journal of Computational and Applied Mathematics
(2008,SCI)
e general solutions on the minimum residual problem and the matrix nearness problem for symmetric matrices or anti-symmetric matrices
Applied Mathematics and Computation(2007,SCI)
Matrix inverse problem and its optimal approximation problem for R-symmetric matrices
Applied Mathematics and Computation(2007,SCI)