当前位置: X-MOL首页全球导师 国内导师 › 唐志尧

个人简介

教育经历 2003.12 理学博士,北京大学城市与环境学系(环境学院). PhD, Peking University 1998.09-2000.09 硕士研究生,北京大学城市与环境学系 Master Student, Peking University 2001.10-2003.10 奔驰访问学生,德国汉诺威大学生物学系 Daimler-Benz Fellow, Leibniz University of Hanover 1998.07 理学学士,北京大学城市与环境学系 BSc, Peking University 工作经历 2021.08- 教授,北京大学城市与环境学院 Professor, Peking University 2007.08-2021.08 副教授,北京大学城市与环境学院 Associate Professor, Peking University 2009.10-2010.10 访问学者,英国谢菲尔德大学动植物科学系 Visiting Researcher, University of Sheffield 2004.04-2007.08 讲师,北京大学城市与环境学院(环境学院) Lecturer, Peking University

研究领域

1). 植物群落构建、多样性与功能:阐明物种多样性的分布格局及其成因,是理解群落构建机制的前提,也是生物多样性保护的科学基础,课题组通过大量野外调查,建立了物种信息和环境信息齐全的 “中国植被样方数据库”,从物种、谱系和功能等多维度研究中国植物多样性的多尺度分布格局与成因,揭示其群落构建的区域分异。 2). 森林动态及树木生长的控制机制 :生长是森林的主要功能体现,也是森林碳汇形成的最主要过程。森林树木生长主要受到物种属性、立地条件、邻体关系以及树木大小等因素的调控,研究不同个体的 生长速率及其控制因素同时也体现了森林群落内物种共存的机制。为实时精确监测我国森林植物生长,研究我国森林碳汇形成以及树木生长的机制,从2011年开始建立“中国东部森林生长监测平台”,研究森林群落物种共存以及多 样性与生态系统功能的关系。 3). 生态化学计量格局及其与生产力的联系:氮磷计量能够反映生物重要的功能属性特征,群落水平的氮磷元素计量特征直接决定着群落生产力等生态功能。课题组试图通过野外调查,建立从器官、个体、物种到群落层次的元素计量推演关系,阐明群落氮磷化学计量与群落生产力的关系。 4)自然保护区的有效性评价 :自然保护区的有效性是减缓生物多样性丧失的主要途径,其保护成效是生物多样性保护的关 键。课题组通过数字化构建了我国现有自然保护区空间数据库,试图利用精确的物种分布数据,确定中国生物多样性分布热点地区及保护空白,并评价现有国 家级自然保护区在体现物种多样性与生态系统多样性的现状。

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Huang L, ... Yang YC*, Tang ZY*, Lindenmayer DB*. 2023. Human activities and species biological traits drive the long-term persistence of old trees in human-dominated landscapes. Nature Plants https://doi.org/10.1038/s41477-023-01412-1 Meng YY... Tang ZY*. 2023. Spatiotemporal patterns of planted forests on the Loess Plateau between 1986 and 2021 based on Landsat NDVI time-series analysis. GIScience & Remote Sensing 60: 2185980. Chen X, et al. 2023. Comparison between the stem and leaf photosynthetic productivity in Eucalyptus urophylla plantations with different age. Planta 257:56. Schuldt A, et al. 2023. Carbon–biodiversity relationships in a highly diverse subtropical forest. Global Change Biology doi: 10.1111/gcb.16697 Tao SL et al. 2023. A global long-term, high-resolution satellite radar backscatter data record (1992–2022C): merging C-band ERS/ASCAT and Ku-band QSCAT. Earth Syst. Sci. Data 15: 1577–1596. Fang WJ, et al. 2022. Species richness patterns and determinants of larch forests in China. Plant Diversity 5: 436-444. Ge JL, ..., Tang ZY*, Xie ZQ*. 2022. Depth-dependent controls over soil organic carbon stock across Chinese shrublands. Ecosystems doi: 10.1007/s10021-022-00757-6. Liu TY, Ji CJ, Tang ZY. 2022. A semi-thin section technique based cell-level anatomical approach to quantify the xylem secondary cell wall deposition and lignification process. IAWA Journal Meng YY, ..., Tang ZY*. 2022. A planted forest mapping method based on long-term change trend features derived from dense Landsat time series in an ecological restoration region. Remote Sensing 14: 961. Wang QG, ... Tang ZY*. 2022. Ecolutionary history and climate conditions constrain the flower colours of woody plants in China. Journal of Plant Ecology 15: 196-207. Weng XX, Guo YP, Tang ZY. 2022. Spatial-temporal dependence f the neighborhood interaction in regulating tree growth in a tropical rainforest. Forest Ecology and Management 508: 120032. Zhang HT, ..., Tang ZY*. 2022. Environment shapes tree community traits in China's forests. Journal of Vegetation Sciences 33: e13146. doi:10.1111/jvs.13146. Zhang YW, ..., Tang ZY*. 2022. Estimating community-level plant traits in a species rich alpine meadow using UAV image spectroscopy. Remote Sensing 14: 3399. Cai GH et al. Plant-Derived lipids play a crucial role in forest soil carbon accumulation. Soil Biology and Biochemistry 168: 108645. Feng YH, et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376: 865-868. Feng YH, et al. Decadal lake volume changes (2003-2020) and driving forces at a global scale. Remote Sensing 14: 1032. Huang HY. et al. Effects of afforestation on soil microbial diversity and enzyme activity: a meta-analysis Geoderma 423: 115961. Guo QH, et al. Human-climate coupled changes in vegetation community complexity of China since 1980s. Earth's Future doi: 10.1029/2021EF002553. Liu YZ, et al. Classification and distribution of evergreen broad-leaved forests in Jiangxi, East China. Journal of Plant Ecology doi: 10.1093/jpe/rtac059. Liu XQ, et al. Neutral network guided interpolation for mapping canopy height of China's forests by integrating GEDI and ICESat-2 data. Remote Sensing of Environment 269: 112844. Ouyang M, et al. Moso bamboo (Phyllostachys edulis) invasion increases forest soil pH in subtropical China. Catena 215: 106339. Satatini FM, et al., 2022. Global patterns of local plant species richness. Nature Communications 13: 4683. Tian QX, et al. Vertical distribution of soil bacterial communities in different types along an elevation gradient. Microbial Ecology doi: 10.1007/s00248-021-01949-8. Wang CC, et al. 2022. Wuling Mountains function as a corridor for woody plant species exchange between northern and southern Central China. Frontiers in Ecology and Evolution doi: 10.3389/fevo.2022.837738. Xiong XY et al. 2022. Aboveground biomass and its biotic and abiotic modulators of a main food bamboo of the giant panda in an subalpine spruce-fir forest in southwestern China. Journal of Plant Ecology doi: 10.1093/jpe/rtab069. Yang YH, et al. 2022. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Science doi: 10.1007/s11427-021-2045-5. (=杨元合等 2022. 陆地生态系统碳源汇特征及其对实现碳中和目标的贡献. 中国科学-生命科学) Yu QS, et al. 2022. Foliar phosphorus allocation and photosynthesis reveal plants’ adaptative strategies to phosphorus limitation in tropical forests at different successional stages. Science of the Total Environment doi: 10.1016/j.scitotenv.2022.157456 Zhang JH, et al. Nutrient resorption responses of plant life forms to nitrogen addion in temperate shrublands. Ecosphere 10.1002/ecs2.4113. Liu TY, ..., Tang ZY*. Trunk internal phenology of cnofierous and broadleaved trees varies differently with altitude on a temperate mountain. Cai Q, et al. Effects of stand structures and biophysical parameters on tree species richness in beech (Fagus) forests in China. Fang WJ, et al., Beta diversity of larch forests in China. 王国宏等 2022.《中国植被志》研编规范的若干说明、补充与修订. 植物生态学报 46: 368-372. Feng YH, ..., Tang ZY*. 2021. Assessing the effectiveness of global protected areas based on the difference in differences model. Ecological Indicators 130: 108078. Guo YP, ..., Tang ZY*. 2021. Environmental constraints on the inter-genus variation in the scaling relationship between leaf nitrogen and phosphorus concentrations. Journal of Plant Ecology 14: 616-627. Gheyret G, ..., Tang ZY*. 2021. Radial growth response of trees to seasonal soil humidity in a subtropical forest. Basic and Applied Ecology 55: 74-86. Li Y, Yan YJ, Tang ZY*,…, Yao YJ*. 2021. Conserving the Chinese caterpillar fungus under climate change. Biodiversity and Conservation 30: 547-550. Zhang JH, ..., Tang ZY*. 2021. Responses of litter decomposition and nutrient dynamics to nitrogen addition to temperate shrublands of North China. Frontiers in Plant Sciences 11: 618675. Zhang YW, Guo YP, Tang ZY* et al. 2021. Patterns of nitrogen and phosphorus pools in terrestrial ecosystems in China. Earth System Science Data 13: 5337-5351. Cai HY, et al. 2021. Geographical patterns in phylogenetic diversity of Chinese woody plants and its application for conservation planning. Diversity and Distribution 27: 179-194. Cai Q, et al. 2021. The relationship between niche breadth and range size of beech (Fagus) species worldwide. Journal of Biogeography 48: 1240-1253. Feng YH, et al. 2021. Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale. Communications Earth & Environment. 2: 88. Ouyang M. et al. 2021. A field-based estimation of moso bamboo forest biomass in China. Forest Ecology and Management 505: 119885. Schnabel F.,et al. 2021. Hydraulic diversity stabilizes productivity in a large scale subtropical tree diversity experiment. Science Advances 7: eabk1643. Sun YF, et al. 2021. Global patterns and climatic drivers of above- and belowground net primary productivity in grasslands. Science China Life Sciences 64: 739-751. Tian QX, et al. 2021. Soil pH and organic carbon properties drive soil bacterial communities in surface and deep layers along an elevational gradient. Frontiers in Microbiology 12: 646142. Trogisch T, et al., 2021. The significance of tree-tree interactions for forest ecosystem functioning. Basic and Applied Ecology 55: 33-52. Wang YP, et al., 2021. Allien woody plant invasions in natural forests across China. Journal of Plant Ecology 14: 749-756. Yi SJ, et al. 2021. Biodiversity, environmental context and structural attributes as drivers of aboveground biomass in shrublands at the middle and lower reaches of the Yellow River Basin. Science of Total Environment 774: 145198. 郭焱培, ..., 唐志尧*. 2021. 中国北方典型灌丛的分布特征及气候限制. 中国科学: 生命科学51: 346. 刘鸿雁,唐志尧(主编)华北地区植物资源保护与利用. 北京: 科学出版社. 2021. Bai YH, …, Tang ZY⁎. 2020. Conservation status of Primulaceae, a plant family with high endemism, in China. Biological Conservation 248: 108675. Fang WJ, ..., Tang ZY*, Fang JY*. 2020. The relationships among structure variables of larch forests in China. Forest Ecosystems 7: 61. Ge JL, Xu WT, Liu Q, Tang ZY*, Xie ZQ*, 2020. Patterns and environmental controls of soil organic carbon density in Chinese shrublands. Geoderma 363: 114161. Gheyret G, Guo YP, Fang JY, Tang ZY*. 2020. Latitudinal and elevational patterns of phylogenetic structure in forest communities in China’s mountains. Science China: Life Science 63: 1895-1904. Gheyret G, Mohammat A, Tang ZY*. 2019. Elevational patterns of temperature and humidity in the middle Tianshan Mountain area in Central Asia. Journal of Moutain Science 12: 397-409. Guo YP, …, Tang ZY*, 2020. The community-level scaling relationship between leaf nitrogen and phosphorus exhibits vegetation’s strategies for nutrient utilization. Journal of Ecology 108: 1276-1286. Guo YP, …, Tang ZY*. 2020. Climate and biomass together control the vertical distribution of soil carbon, nitrogen and phosphorus in shrublands in China. Plant and Soil 456: 15-26. Liu Z, Wang F*, Tang ZY*, Tang JT. 2020. Predictions and driving factors of production-based CO⁠2 emissions in Beijing, China. Sustainable Cities and Society 53: 101909. Zhang SY, …, Tang ZY⁎. 2020. Representativeness of threatened terrestrial vertebrates in nature reserves in China. Biological Conservation 246: 108599. He NP, et al. 2020. Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution 35: 908-918. Li YQ, et al. 2020. Leaf size of woody dicots predicts ecosystem primary productivity, Ecology Letters 23: 1003-1013. Song SS, et al. 2020. Long-term grazing exclusion reduces species diversity but increases community heterogeneity in an alpine grassland. Frontiers in Ecology and Evolution 8: 66. Su YJ, et al., 2020. An updated Vegetation Map of China (1:1000000). Science Bulletin 65: 1125-1136. Zhu JX, et al., 2020. Increasing soil carbon stocks in eight permanent forest plots in China. Biogeosciences 17: 715-726. 张新悦, ..., 唐志尧*. 2020. 1982-2014年华北及周边地区生长季NDVI变化及其驱动因子. 北京大学学报 57: 153-161. 李熠等. 2020. 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例. 生物多样性 28: 99–106. 张恒等. 2020. 近 30 年京津冀地区湖泊面积的变化. 北京大学学报(自然科学版) doi: 10.13209/j.0479-8023.2019.123. 方精云等. 2020. 《中国植被志》的植被分类系统、植被类型划分及编排体系. 植物生态学报 44: 96-110. 王国宏等. 2020.《中国植被志》研编内容与规范. 植物生态学报 2020, 44 (2): 128–176. 郭柯等. 2020. 中国植被分类系统修订方案. 植物生态学报 44: 111-127. 谢宗强,唐志尧,刘庆,徐文婷. 中国灌丛生态系统碳汇. 北京: 科学出版社. 2019. Guo YP, …, Tang ZY*, 2019. Increasing water availability and facilitation weaken biodiversity–biomass relationships in shrublands. Ecology 100: e02624. Yan YJ, Tang ZY*. 2019. Protecting endemic plants on the Tibetan Plateau under future climate change: migration matters. Journal of Plant Ecology 12: 962-971. Zhang Q, ..., Tang ZY*, Xie ZQ*, 2019. C: N: P stoichiometry of Ericaceae species in shrubland biomes across Southern China: influences of climate, soil and species identity. Journal of Plant Ecology 12: 346-357. Bruelheide H, et al. 2019. sPlot – a new tool for global vegetation analyses. Journal of Vegetation Sciences 30: 161-186. Feng YH, et al. 2019. Changes in the trends of vegetation net primary productivity in China between 1982 and 2015. Environment Research Letters 14:124009. He HL, et al. 2019. Altered trend in carbon uptake China's terrestrial ecosystems under the enhanced summer monsoon and warming hiatus. National Science Review 6: 505-514. Tian D, et al. 2019. A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. Ecology 100: e02812. Wang QG, et al. 2019. Analyzing tree neighborhood interactions in ecotones of montane evergreen and deciduous forests in China. Journal of Vegetation Sciencesm30: 654-663. Xiao J, et al. 2019. Responses of four dominant dryland plant species to climate change in the Junggar Basin, north-west China. Ecology and Evolution 9: 13596-13607. Zhang H, et al., 2019. High-resolution vegetation mapping using eXtreme Gradient Boosting based on extensive features. Remote Sensing 11: 1505. 张雪皎, ..., 唐志尧*. 2019. 中国北方栎属树木多度分布及其对未来气候变化的响应. 植物生态学报 43: 774-782. 唐志尧, 刘鸿雁. 2019. 华北地区植物群落分布格局及构建机制. 植物生态学报 43: 729-731. Tang ZY#, Xu WT#, Zhou GY#, et al. 2018. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. PNAS 115: 4033-4038. Tang XL#, Zhao X#, Bai YF#, Tang ZY#, et al. 2018. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. PNAS 115: 4021-4026. Bruelheide H, et al. 2018. Global trait-environment relationships of plant communities. Nature Ecology and Evolution 2: 1907-1918. Chen SP, et al. 2018. Plant diversity enhances productivity and soil carbon storage. PNAS 115: 4027-4032. Huang YY, et al., 2018. Strong impacts of biodiversity in a large-scale subtropical forest experiment. Science 362: 80-83. Jiang ZH, et al. 2018. A trait-based approach reveals the importance of biotic filter on elevational herb richness pattern. Journal of Biogeography 45:2288–2298. Liu XJ, et al. 2018. Tree species richness increases ecosystem carbon storage in subtropical forests. Proc. Royal Society B 285: 20181240. Lu F, et al. 2018. The effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. PNAS 115: 4039-4044. Schuldt A, et al. 2018. Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications 9: 2989. Shrestha N, et al. 2018. Global patterns of Rhododendron diversity: The role of evolutionary time and diversification rates. Global Ecology and Biogeography 27: 913-924. Tian D, et al. 2018. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. National Science Review 5: 728-739. Zhang Q, et al. 2018. Nitrogen and phosphorus concentrations and allocation strategies among shrub organs: the effects of plant growth forms and nitrogen fixation type. Plant and Soil 427: 305-319. Zhao H, et al. 2018. Spatial patterns and environmental factors influencing leaf carbon content in the forests and shrublands of China. Journal of Geographical Science 28: 791-801. 唐志尧等. 2018. 遥感在生物多样性研究与保护中的应用. 生物多样性 26: 807-818. 张则瑾,..., 唐志尧*. 2018. 中国极小种群野生植物的保护现状评估. 生物多样性 26: 572–577. 刘鸿雁, 唐志尧, 朱彪. 野外生态学实习指导. 北京大学出版社. 2018. 谢宗强, 王杨, 唐志尧, 徐文婷. 中国常见灌木生物量模型手册. 科学出版社. 2018.

推荐链接
down
wechat
bug