当前位置: X-MOL首页全球导师 国内导师 › 方博汉

个人简介

Education Ph.D. in Mathematics, Northwestern University, Evanston, IL, USA, 2010 Advisor: Professor Eric Zaslow Thesis: Mirror symmetry, constructible sheaves and toric varieties B.S. in Mathematics, Peking University, Beijing, China, 2005 Affiliation Professor, Peking University, Beijing, China, 2023 – present Associate Professor, Peking University, Beijing, China, 2020 – 2023 Member, Institute for Advanced Study, Princeton, NJ, USA, 2017 Spring Assistant Professor, Peking University, Beijing, China, 2014 – 2020 Ritt Assistant Professor, Columbia University, New York, NY, USA, 2010 – 2014 Grants NSFC 12125101, PI, Mirror symmetry, 2021-2026 NSFC 11890661, Co-PI, Geometric structures and topological invariants, 2019–2024 NSFC 11831017, Co-PI, Gromov-Witten invariants, 2019–2024 NSF DMS-1206667, PI, Open Mirror Symmetry for Toric Varieties, 2012 – 2015 Awards China Youth Science and Technology Prize 中国青年科技奖, 2022

研究领域

Algebraic and symplectic geometry. Mirror symmetry, both categorical and enumerative aspects (homological mirror symmetry and Gromov-Witten invariants).

Research Area Algebraic and symplectic geometry. Mirror symmetry, both categorical and enumerative aspects (homological mirror symmetry and Gromov-Witten invariants).

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

B. Fang, C.-C. M. Liu, H.-H. Tseng; Open-closed Gromov-Witten invariants of 3-dimensional Calabi-Yau smooth toric DM stacks, Forum Math. Sigma 10 (2022), Paper No. e58, 56 pp. B. Fang, Central charges of T-dual branes for toric varieties, Trans. Amer. Math. Soc. 373 (2020), no. 6, 3829 – 3851. B. Fang, C.-C. M. Liu, Z. Zong, On the Remodeling Conjecture for Toric Calabi-Yau 3-orbifolds, J. Amer. Math. Soc. 33 (2020), no. 1, 135 – 222. B. Fang, C.-C. M. Liu, Z. Zong, All genus open-closed mirror symmetry for affine toric Calabi-Yau 3-orbifolds, Algebr. Geom. 7 (2020), no. 2, 192 – 239. B. Fang, Y. Ruan, Y. Zhang, J. Zhou, Open Gromov-Witten theory of KP2 ,KP1×P1 , KWP[1,1,2], KF1 and Jacobi forms, Comm. Math. Phys. 369 (2019), no. 2, 675–719. B. Fang, Z. Zong, Topological recursion for the conifold transition of a torus knot, Selecta Math.(N.S.) 25 (2019), no. 3, 25:35. B. Fang, Eynard-Orantin B-model and its application in mirror symmetry, in B-model Gromov-Witten theory, 499–538, Trends in Mathematics, Birkh¨auser, Basel, 2018.ISBN: 978-3-319-94220-9. B. Fang, Z. Zong, Graph sums in the remodeling conjecture, in Topological Recursion and its Influence in Analysis, Geometry, and Topology, 2016 AMS von Neumann Symposium, 359–403, Proc. Symps. Pure Math. 100, Amer. Math. Soc., Providence, RI,2018. B. Fang, C.-C. M. Liu, Z. Zong, The Eynard-Orantin recursion and equivariant mirror symmetry for the projective line, Geom. Topol. 21 (2017), no. 4, 2049–2092, B. Fang, C.-C. M. Liu, Z. Zong, All genus mirror symmetry for toric Calabi-Yau 3-orbifolds, in String-Math 2014, 1–19, Proc. Sympos. Pure Math., 93, Amer. Math. Soc., Providence, RI, 2016. B. Fang, C.-C. M. Liu, Z. Zong, The SYZ mirror symmetry and the BKMP remodeling conjecture, Adv. Theo. Math. Phys. 20, no. 1, 165–192, 2016. B. Fang, C.-C. M. Liu, Z. Zong, Equivariant Gromov-Witten theory of affine smooth toric Deligne-Mumford stacks, Int. Math. Res. Not. IMRN (2016), no. 7, 2127–2144. B. Fang, C.-C. M. Liu, D. Treumann and E. Zaslow, Coherent-constructible correspondence for toric Deligne-Mumford stacks, Int. Math. Res. Not. IMRN (2014), no.4, 914–954. B. Fang, C.-C. M. Liu, Open Gromov-Witten invariants of toric Calabi-Yau 3-folds, Comm. Math. Phys. 323 (2013), no. 1, 285–328. B. Fang, C.-C. M. Liu, D. Treumann and E. Zaslow, T-duality and homological mirror symmetry for toric varieties, Adv. Math. 229 (2012), no. 3, 1875–1911, with C.-C. M. Liu, D. Treumann and E. Zaslow. B. Fang, C.-C. M. Liu, D. Treumann and E. Zaslow, A categorification of Morelli’s theorem, Invent. Math. 186 (2011), no. 1, 79–114. B. Fang, C.-C. M. Liu, D. Treumann and E. Zaslow, The coherent-constructible correspondence and Fourier-Mukai transforms, Acta Math. Sin. (Engl. Ser.) 27 (2011),no. 2, 275–308. B. Fang, C.-C. M. Liu, D. Treumann and E. Zaslow, The coherent-constructible correspondence and homological mirror symmetry for toric varieties, Geometry and analysis. No. 2, 3–37, Adv. Lect. Math. (ALM), 18, Int. Press, Somerville, MA, 2011. B. Fang, Homological mirror symmetry is T-duality for P n, Commun. Number Theory Phys. 2 (2008), no. 4, 719–742. B. Fang, X. Tan, W. Zhang, Some results on special stable vector bundles of rank 3 on algebraic curves, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 3, 417–430.

学术兼职

Activity Organizer of Beijing Geometry and Physics Colloquium Organizer of Symplectic Geometry & Physics Seminar at Peking University Organizer of Gromov-Witten Theory Seminar at Columbia University Member of the American Mathematical Society Reviewer of AMS Math Review and Zentralblatt MATH Student advisor to Math Major Class 2016 and Math Honors Class 2015 (Peking University)

推荐链接
down
wechat
bug