近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
(1) J. Zhang, S. Li and R. Song, Quasi-stationary and Quasi-ergodicity of general Markov processes,Science China Mathematics , 2014 (online), DOI: 10.1007/s11425-014-4835-x , (SCI)
(2) H. Wang and S. Li, Some properties and convergence theorems of set-valued Choquet integrals, Fuzzy Sets and Systems, Vol.219(2013),89-97. (SCI,EI )
(3) J. Zhang and S. Li, Maximal (minimal) conditional expectation and European option pricing with ambiguous return rate and volatility, International Journal of Approximate Reasoning, Vol.54 (2013) 393-403. (SCI,EI)
(4) H. Wang and S. Li, Ambiguous risk aversion under capacity, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 20(1), 91-103 (SCI,EI)
(5) S. Li, J. Li and X. Li, Stochastic integral with respect to set-valued square integrable martingales, J. Math. Anal. Appl., Vol. 370 (2010), 659-671. (SCI)
(6) J. Li, S. Li and Y. Ogura, Strong solution of Ito type set-valued stochastic differential equation, Acta Mathematica Sinica, English Series, Vol.26, (2010), 1739- 1748. (SCI)<?/font>
(7) Y. Ogura, S. Li and X. Wang, Large and moderate deviations of random upper semi-continuous functions, Stoch. Anal. Appl., Vol. 28 (2010), 350-376. (SCI)
(8) S. Li and W. Yang, Capacities, set-valued random variables and laws of large numbers for capacities,Integrated Uncertainty Management and Applications (eds. by V.N. Huynh, Y. Nakamori, J. Lawry and M. Inuiguchi), Springer. 2010, 127-238. (EI)
(9) J. Zhang and S. Li, The portfolio selection problem with random interval -valued return rates,International Journal of Innovative Computing, Information and Control, Vol.5 (2009), 2847-2856. (SCI)
(10) J. Li and S. Li, Aumann type set-valued Lebesgue integral and representation theorem, International Journal of Computational Intelligence Systems, Vol. 2, No.1 (2009), 83-90. (SCI, EI)
(11) J. Zhang, S. Li, I. Mitoma and Y. Okazaki, On the solution of set-valued stochastic differential equation in M-type 2 Banach space, Tohoku Mathematical Journal, Vol. 61(2009), 417-440.(SCI)
(12) J. Zhang, S. Li, I. Mitoma and Y. Okazaki, On set-valued stochastic integrals in an M-type 2 Banach space, J. Math. Anal. Appl., Vol.350 (2009),216–233(SCI).
(13) J. Li and S. Li, Set-valued stochastic Lebesgue integral and representation theorems, International Journal of Computational Intelligence Systems, Vol. 1, No.2 (2008), 177-187. (SCI,EI)
(14) X. Li and S. Li, The modified Dp-metric space of fuzzy set-valued random variables and its application to variances, International Journal of Innovative Computing, Information and Control, Vol.4 (2008), 1647-1659. (SCI)
(15) L. Guan, S. Li and Y. Ogura, A strong law of large numbers of fuzzy set-valued random variables with slowly varying weights, International J. Automation and Control, Vol. 2, Nos. 2/3 (2008), 365-375. (EI)
(16) S. Li and L. Guan, Decomposition and representation theorem of set-valued amarts, International Journal of Approximate Reasoning, Vol. 46 (2007) , 35-46. (SCI,EI)
(17) S. Li and L. Guan, Fuzzy set-valued Gaussian processes and Brownian motions, Information Sciences,177(2007), 3251-3259. (SCI, EI)
(18) S. Li and A. Ren, Representation theorems, set-valued and fuzzy set-valued Ito integral, Fuzzy Sets and Systems, 158 (2007), 949-962. (SCI, EI)
(19) S. Li and Y. Ogura, Strong laws of large numbers for independent fuzzy set-valued random variables,Fuzzy Sets and Systems, Vol.157 (2006), 2569-2578. (SCI, EI)
(20) S. Li and J. Zhang, A general method for convergence theorems of fuzzy set-valued random variables and its applications to martingales and uniform amarts, International Journal of Uncertainty, Fuzziness andKnowledge–Based Systems, Vol.13 (2005), 243-253. (SCI, EI)
(21) X. Yang and S. Li, The Dp metric space of set-valued random variables and its application to covariances, International Journal of Innovative Computing, Information and Control, Vol.1, No.1 (2005) 73-82. (SCI)
(22) S. Li and Y. Ogura, Martingale Convergence Theorem for the Fuzzy Valued Random Variables in the Sense of Extended Hausdorff Metric, Fuzzy Sets and Systems, Vol.135, No.3 (2003),391-399 (SCI, EI)
(23) S. Li and Y. Ogura, Central limit theorems for generalized set-valued random variables, J. Math. Anal. Appl. Vol. 285, (2003), 250-263 (SCI)
(24) Y. Ogura and S. Li, Separability for graph convergence of sequences of Fuzzy Valued Random Variables,Fuzzy Sets and Systems, Vol.123(2001),19-27 (SCI, EI)
(25) S. Li, Y. Ogura and H. Nguyen, Gaussian processes and martingales for fuzzy valued random variables with continuous parameter, Information Sciences, Vol. 133, (2001)7-21 (SCI, EI)
(26) S. Li, Y. Ogura and D. Ralescu, Set defuzzification and Choquet integral,International Journal ofUncertainty, Fuzziness and Knowledge –Based Systems, Vol. 9, No.1(2001), 1-12 (SCI, EI)
(27) S. Li and Y. Ogura, Convergence of set valued and fuzzy valued martingales, Fuzzy Sets and Systems,Vol.101, No.3 (1999), 453-461 (SCI, EI)
(28) S. Li and Y. Ogura, Convergence of set valued sub- and super-martingales in the Kuratowski--Mosco Sense, The Annals of Probability, Vol.26, No.3 (1998), 1384-1402 (SCI)
(29) Fuzzy Linear Regression Analysis of Fuzzy Valued Variables, Fuzzy Sets and Systems, Vol. 36 (1990), 125-136. (SCI, EI).