当前位置: X-MOL首页全球导师 国内导师 › 张原

个人简介

CAREER Peking University 2018 –Assistant Professor Texas A&M University 2016 – 2018 Visiting Assistant Professor University of California, Los Angeles 2015 – 2016 Assistant Adjunct Professor EDUCATION Duke University 2010 – 2015 Ph.D. in Mathematics, May 2015 Thesis area: Probability Thesis title: Applications of spatial models to ecological and social systems Advisor: Prof. Rick Durrett Peking University 2006 – 2010 B.S., July 2010 Mentor: Prof. Yanxia Ren 教学经历 加州大学洛杉矶分校 MATH 170A: Undergraduate Probability Theory Part 1, fall quarter, 2015 (6.64/9) MATH 170B: Undergraduate Probability Theory Part 2, winter quarter, 2016 (8.13/9) MATH 174E: Undergraduate Mathematics Finance, winter quarter, 2016 (6.5/9) MATH 170B: Undergraduate Probability Theory Part 2, spring quarter, 2016 (7.94/9) MATH 170B: Undergraduate Probability Theory Part 2, spring quarter, 2016 (7.1/9) 得州 A&M 大学(TAMU) MATH 152: Engineering Mathematics II (Calculus II), fall semester, 2016 MATH 308: Differential Equations, spring semester, 2017 MATH 151: Engineering Mathematics I (Calculus I), fall semester, 2017 MATH 308: Differential Equations, spring semester, 2018 北京大学 2018 年秋季学期:高等概率论(98.67/100) 2019 年春季学期:概率统计 B (91.19/100), 指导 3 名本科生毕业论文 2019 年秋季学期:高等概率论(99.37/100) 2020 年春季学期:概率统计 B(88.60/100), 指导 2 名本科生毕业论文 2020 年秋季学期:教学轮空 2021 年春季学期:概率统计 B(91.10/100), 指导 1 名本科生毕业论文 2021 年秋季学期:概率统计 A(93.64/100) 2022 年春季学期:概率统计 B, 指导 3 名本科生毕业论文 班主任 北京大学 2018 级本科 5 班班主任 教学获奖 北京大学第十九届青年教师教学基本功比赛 理工组 一等奖 北京大学第十九届青年教师教学基本功比赛 理工组 最佳教学演示奖 北京大学第十九届青年教师教学基本功比赛 理工组 最受学生欢迎奖 北京大学 2019-2020 年优秀班主任 北京高校第十二届青年教师教学基本功比赛 最受学生欢迎奖 (理科类第一名) 北京高校第十二届青年教师教学基本功比赛 最佳教学反思奖(理科类第一名) 北京高校第十二届青年教师教学基本功比赛 三等奖

研究领域

Interacting Particle Systems and their applications; Random Geometry, particularly Diffusion Limited Aggregations (DLA) and Random Interlacement models.

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] Durrett, R., & Zhang, Y. (2014). Exact solution for a metapopulation version of Schelling’s model. Proceedings of the National Academy of Sciences - PNAS, 111(39), 14036-14041. doi:10.1073/pnas.1414915111 [2] Durrett, R., Liggett, T., & Zhang, Y. (2014). The contact process with fast voting. Electronic Journal of Probability, 19 doi:10.1214/EJP.v19-3021 [3] Durrett, R., & Zhang, Y. (2015). Coexistence of grass, saplings and trees in the Staver–Levin forest model. The Annals of Applied Probability,25(6), 3434-3464. doi:10.1214/14-AAP1079 [4] Lanchier, N., & Zhang, Y. (2016). Some rigorous results for the stacked contact process. Alea-Latin American Journal of Probability and Mathematical Statistics, 13(1), 193-222. doi:10.30757/ALEA.v13-08 [5] Liu, J., & Zhang, Y. (2016). Convergence of diffusion-drift many particle systems in probability under a Sobolev norm. (pp. 195-223). Cham: Springer International Publishing. doi:10.1007/978-3-319-32144-8_10 [6] Liu, J., & Zhang, Y. (2016). Convergence of stochastic interacting particle systems in probability under a sobolev norm. Annals of Mathematical Sciences and Applications, 1(2), 251-299.doi:10.4310/AMSA.2016.v1.n2.a1 [7] Procaccia, E. B., & Zhang, Y. (2018). On covering paths with 3 dimensional random walk. Electronic Communications in Probability, 23 doi:10.1214/18-ECP160 [8] Procaccia, E. B., & Zhang, Y. (2019). Connectivity properties of branching interlacements. Alea-Latin American Journal of Probability and Mathematical Statistics, 16(1), 279-314. doi:10.30757/ALEA.v16-10 [9] Wang, C., Zhang, Y., Bertozzi, A. L., & Short, M. B. (2019). A stochastic-statistical residential burglary model with finite size effects. (pp. 245-274). Cham: Springer International Publishing. doi:10.1007/978-3-030-20297-2_8 [10] Procaccia, E. B., & Zhang, Y. (2019). Stationary harmonic measure and DLA in the upper half plane. Journal of Statistical Physics, 176(4),946-980. doi:10.1007/s10955-019-02327-y [11] Wang, C., Zhang, Y., Bertozzi, A. L., & Short, M. B (2020). A stochastic-statistical residential burglary model with independent poisson clocks. European Journal of Applied Mathematics, , 1-27.doi:10.1017/s0956792520000029 [12] Procaccia, E. B., Rosenthal, R., & Zhang, Y. (2020). Stabilization of DLA in a wedge. Electronic Journal of Probability, 25 doi:10.1214/20-EJP446 [13] Procaccia, E. B., Ye, J., & Zhang, Y. (2020). Stationary DLA is well defined. Journal of Statistical Physics, 181(4), 1089-1111.doi:10.1007/s10955-020-02619-8 [14] Mu, Y. X., & Zhang, Y. (2020). On some threshold-one attractive interacting particle systems on homogeneous trees. Journal of Applied Probability, 57(3), 866-898. doi:10.1017/jpr.2020.38 [15] Zhang, Y., You, C., Cai, Z., Sun, J., Hu, W., & Zhou, X. (2020).Prediction of the COVID-19 outbreak in china based on a new stochastic dynamic model. Scientific Reports, 10(1), 21522-21522.doi:10.1038/s41598-020-76630-0 [16] Procaccia, E. B., & Zhang, Y. (2020). On covering monotonic paths with simple random walk. Electronic Journal of Probability, 25, 1-39. [17] 张云俊, 张原, 尤翀,周晓华. 2020,新型冠状病毒肺炎(COVID-19)传染病传播动⼒学模型的综述, 中华医学科研管理杂志,33:⽹络预发表. DOI:10.3760/cma.j.cn113565-20200214-00007 [18] 张原, 尤翀,蔡振豪,孙嘉瑞,胡⽂杰,周晓华. 2020,新冠肺炎 (COVID-19)新型随机传播动⼒学模型及应⽤, 应⽤数学学报,43(2),440-451 [19] Procaccia, E. B., & Zhang, Y. (2021). On sets of zero stationary harmonic measure. Stochastic Processes and their Applications, 131,236-252. doi:10.1016/j.spa.2020.09.007 [20] Cai, Z., Xiong, Y., & Zhang, Y. (2021). On (non-)monotonicity and phase diagram of finitary random interlacement. Entropy (Basel, Switzerland), 23(1), 69. doi:10.3390/e23010069 (corresponding author) [21] Procaccia, E. B., Ye, J., & Zhang, Y. (2021). Percolation for the finitary random interlacements. Alea, 18(1), 265-287. [22] Wang, C., & Zhang, Y. (2021). A Multiscale Stochastic Criminal Behavior Model under a Hybrid Scheme. Electronic Research Archive,29(4): 2741-2753. doi:10.3934/era.2021011 [23] Procaccia, E. B., Ye, J., & Zhang, Y. (2021). Stationary harmonic measure as the scaling limit of truncated harmonic measure. Alea, 18,1529–1560. doi:10.30757/ALEA.v18-56 [24] You, C., Gai, X., Zhang Y., & Zhou X. (2021). Determining the Covertness of COVID-19 — Wuhan, China, China CDC Weekly, 3(8), 170-173. doi:10.46234/ccdcw2021.048 (joint corresponding author) [25] Cai, Z., & Zhang, Y. (2021). Some Rigorous Results on the Phase Transition of Finitary Random Interlacement. Electronic Communications in Probability, 26: 1-11. doi: 10.1214/21-ECP424 [26] Liu, J., Wang, Z., Zhang, Y., & Zhou, Z. (2021). Rigorous justification of the Fokker-Planck equations of neural networks based on an iteration perspective. SIAM Journal on Mathematical Analysis, accepted [27] Liu, J., Wang, Z., Xie, Y., Zhang, Y., & Zhou, Z. (2021). Investigating the integrate and fire model as the limit of a random discharge model: A stochastic analysis perspective. Mathematical Neuroscience and Applications, accepted [28] Zhang, Y., You, C., Gai, X., & Zhou X. (2021) On the coexistence with COVID-19: estimations and perspectives. China CDC Weekly, 2021, 3(50):1057-1061. doi: 10.46234/ccdcw2021.245 [29] Cai, Y., Wang, C., Zhang, Y. (2021). A multiscale stochastic criminal behavior model and the convergence to a piecewise-deterministicMarkov-process limit. Mathematical Models and Methods in Applied Sciences, accepted [30] Wang, X., Cai, Y., Zhang, B., Zhang, X., Wang, L., Yan, X., Zhao X., Zhang, Y., Jia Z. (2022) Cost-effectiveness analysis on COVID-19 surveillance strategy of large-scale sports competition. Infectious Diseases of Poverty, accepted (joint/last corresponding author

推荐链接
down
wechat
bug