近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Selected International Journal Papers:
[56] H Ren, Y Xu, J Cheng, P Cao, M Zhang, S Fu, Z Zhu, 2019, Vortex-induced vibration of flexible pipe fitted with helical strakes in oscillatory flow, Ocean Engineering 189, 106274
[55] H Ren, Y Xu, M Zhang, S Fu, Y Meng, C Huang, 2019, Distribution of drag coefficients along a flexible pipe with helical strakes in uniform flow, Ocean Engineering 184, 216-226
[54]J Wang, S Fu*, R Baarholm, M Zhang, C Liu, 2019, Global motion reconstruction of a steel catenary riser under vessel motion, Ships and Offshore Structures 14 (5), 442-456
[53] H Ren, Y Xu, M Zhang, S Deng, S Li, S Fu, H Sun, 2019, Hydrodynamic forces on a partially submerged cylinder at high Reynolds number in a steady flow, Applied Ocean Research 88, 160-169
[52] D Lu, S Fu*, X Zhang, F Guo, Y Gao, 2019, A method to estimate the hydroelastic behaviour of VLFS based on multi-rigid-body dynamics and beam bending, Ships and Offshore Structures 14 (4), 354-362
[54]Z Lu, S Fu, M Zhang, H Ren. An efficient time-domain prediction model for vortex-induced vibration of flexible risers under unsteady flows. Marine Structures,2018, 64, 492-519.
[53]W Wei, S Fu, T Moan, C Song, S Deng, H Lie. A Time-Domain Method for Hydroelasticity of a Curved Floating Bridge in Inhomogeneous Waves. Journal of Offshore Mechanics and Arctic Engineering,2018, 141 (1), 014501.
[52]M Zhang, S Fu, L Song, J Wu, H Lie, H Hu. Hydrodynamics of flexible pipe with staggered buoyancy elements undergoing vortex-induced vibrations. Journal of Offshore Mechanics and Arctic Engineering,2018, 140 (6), 061805.
[51]T Ren, M Zhang, S Fu, L Song. Hydrodynamics of A Flexible Riser Undergoing the Vortex-Induced Vibration at High Reynolds Number. China Ocean Engineering,2018, 32 (5), 570-581.
[50]J Wang, S Fu, R Baarholm. Evaluation of vortex-induced vibration of a steel catenary riser in steady current and vessel motion-induced oscillatory current. Journal of Fluids and Structures,2018, 82, 412-431.
[49]C Liu, S Fu, M Zhang, H Ren. Time-varying hydrodynamics of a flexible riser under multi-frequency vortex-induced vibrations. Journal of Fluids and Structures,2018, 80, 217-244.
[48]J Wang, S Fu, R Baarholm, M Zhang, C Liu. Global motion reconstruction of a steel catenary riser under vessel motion. Ships and Offshore Structures, 2018,1-15.
[47]M Zhang, S Fu, L Song, X Tang, Y He. A time domain prediction method for the vortex-induced vibrations of a flexible riser. Marine Structures,2018, 59, 458-481.
[46]Z Lu, S Fu, M Zhang, H Ren, L Song.A modal space based direct method for vortex-induced vibration prediction of flexible risers.Ocean Engineering,2018, 152, 191-202.
[45]Song, CH; Fu, SX; Tang, XY; Hu, K; Ma, LX; Ren, TX. Hydrodynamics of the Semi-Immersed Cylinder by Forced Oscillation Model Testing. CHINA OCEAN ENGINEERING,2018,32,110-116.
[44]Wei, W; Fu, SX; Moan, T; Song, CH; Ren, TX. A time-domain method for hydroelasticity of very large floating structures in inhomogeneous sea conditions. MARINE STRUCTURES,2018,57,180-192.
[43]Song, LJ; Fu, SX; Li, M; Gao, Y; Ma, LX. Tension and drag forces of flexible risers undergoing vortex-induced vibration. CHINA OCEAN ENGINEERING,2017, 31,1-10.
[42]Song, LJ; Fu, SX; Ren, T; Lu, ZQ. Phase Angles of the Vibrations and Hydrodynamic Forces of the Flexible Risers Undergoing Vortex-Induced Vibration. 2017,139.
[41]Lu, WY; Yang, JM; Fu, SX. Numerical study of the generation and evolution of breather-type rogue waves. SHIPS AND OFFSHORE STRUCTURES,2017,12,1,66-76.
[40]Wei, W; Fu, SX; Moan, T; Lu, ZQ; Deng, S. A discrete-modules-based frequency domain hydroelasticity method for floating structures in inhomogeneous sea conditions. JOURNAL OF FLUIDS AND STRUCTURES,2017,74,321-339.
[39]Wang, JG; Fu, SX; Larsen, CM; Baarholm, R; Wu, J; Lie, H. Dominant parameters for vortex-induced vibration of a steel catenary riser under vessel motion. OCEAN ENGINEERING,2017,136,260-271.
[38]Gao, Y; Fu, SX; Xiong, YM; Zhao, Y; Liu, LM. Experimental study on response performance of vortex-induced vibration on a flexible cylinder. SHIPS AND OFFSHORE STRUCTURES,2017,12,116-134.
[37]Gao, Y; Fu, SX; Ma, LX; Chen, YF. Experimental investigation of the response performance of VIV on a flexible riser with helical strakes. SHIPS AND OFFSHORE STRUCTURES,2016,11,113-128.
[36]Ma, LX; Hu, K; Fu, SX; Moan, T; Lit, RP. A Hybrid Empirical-Numerical Method for Hydroelastic Analysis of a Floater-and-Net System. JOURNAL OF SHIP RESEARCH 2016,60,14-29.
[35]Wang, JG; Xiang, S; Fu, SX; Cao, PM; Yang, JM; He, JX. Experimental investigation on the dynamic responses of a free-hanging water intake riser under vessel motion. MARINE STRUCTURES,2016,50,1-19.
[34]Song LJ,Fu SX,Dai SY,Zhang MM,Chen YF. Distribution of drag force coefficient along a flexible riser undergoing VIV in sheared flow. OCEAN ENGINEERING,2016, 126,1-11.
[33] Gao Yun, Fu Shixiao, Xiong Youming, Liu Liming. Experimental study of the effects of surface roughness on the vortex-induced vibration response of a riser. Journal of Ship Mechanics, 2015, 19, 1007-7294
[32] Wang, Jungao, Fu Shixiao; Baarholm, Rolf; Wu, Jie; Larsen, Carl Martin. Out-of-plane vortex-induced vibration of a steel catenary riser caused by vessel motions. Ocean Engineering, 2015, 109, 389-400
[31] Gao, Yun, Fu Shixiao; Wang, Jungao; Song, Leijian; Chen, Yifan. Experimental study of the effects of surface roughness on the vortex-induced vibration response of a flexible cylinder. Ocean Engineering, 2015, 103, 40-57.
[30] Gao, Yun, Fu Shixiao; Ren, Tie; Xiong, Youming; Song, Leijian. VIV response of a long flexible riser fitted with strakes in uniform and linearly sheared currents. Applied Ocean Research, 2015, 52, 102-114.
[29] Guo, Yousong, Chen, Xiqia; Wang, Deyu; Fu, Shixiao. Analytical and numerical investigation on the structural response of flexible risers under axisymmetric load. Shiyou Xuebao/Acta Petrolei Sinica, 2015, 36(4), 504-510 and 515.
[28] Jungao Wang, Shixiao Fu*, Rolf Baarholmb, JieWuc, C. M. Larsend. Fatigue Damage Induced by VIV in Oscillatory Flow, Marine Structures, 2015, v40:73–91
[27] Yun Gao, Shixiao Fu*, Jing Cao, Yifan Chen. Experimental study on response performance of VIV of a flexible riser with helical strakes, China Ocean Engineering, 2015, 29(5):673-690
[26] Mengmeng Zhang, Xiqia Chen, Shixiao Fu, Yousong Guo, Leixin Ma, Theoretical and numerical analysis of bending behavior of unbonded flexible risers, Marine Structures, 2015, 44, 311-325.
[25] Gao Yu, Fu Shixiao, Song Leijian. Experimental investigation on the suppression device of VIV of a flexible riser. Journal of Vibration and Shock. 2014, 33(14)
[24] Song Leijian, Fu Shixiao, Chen Xiqia, Guo Hong, Qu Yan Comparative study on deepwater umbilical overall response characteristics. Journal of Vibration and Shock, 2014,33(1)
[23] Wang Jungao, Fu Shixiao, Xu Yuwang, Song Leijian Tests for time sharing of vortex-induced vibration of a flexible cylinder in oscillatory flow. Journal of Vibration and Shock, 2014, 33(21)
[22] Wang, Jungao, Fu, Shixiao; Xu, Yuwang; Song, Leijian. VIV developing process of a flexible cylinder under oscillatory flow. Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2), 173-182.
[21] Fang, Sam M., Niedzwecki, John M.; Fu, Shixiao; Li, Runpei; Yang, Jianmin. VIV response of a flexible cylinder with varied coverage by buoyancy elements and helical strakes. Marine Structures, 2014, 39, 70-89
[20] Jungao Wang, Shixiao Fu*, Rolf Baarholm, Jie Wu, Carl Martin Larsen. Fatigue damage of a steel catenary riser from vortex-induced vibration caused by vessel motions, Marine Structures, 2014, v39, pp 131–156.
[19] Shixiao Fu*, Yuwang Xu, Ke Hu, Qian Zhong, Runpei Li, Experimental Investigation on Hydrodynamics of a Fish Cage Floater-net System in Oscillatory and Steady Flows by Forced Oscillation Tests, Journal of Ship Research, 2014, v25(1), pp 20-29.
[18] Yun Gao, Shixiao Fu*, Leixin Ma, Yifan Chen. Experimental investigation of the response performance of VIV on a flexible riser with helical strakes, Ships and Offshore Structures, 2014.
[17] Shixiao Fu*, Yuwang Xu, Yin Chen, Seabed Effects on the Hydrodynamics of a Circular Cylinder Undergoing Vortex-Induced Vibration at High Reynolds Number, Journal of Waterway, Port, Coastal, and Ocean Engineering, 2014, v140(3), 04014008.
[16] Shixiao Fu*, Jungao Wang, Rolf Baarholmb, Jie Wuc, C. M. Larsend , 2014. Features of Vortex-Induced Vibration by Oscillatory Flow, Journal of Offshore Mechanics and Arctic Engineering.
[15] Ying Chen; Shixiao Fu*; Yuwang Xu; Dixia Fan, 2013. High order force components of a near-wall circular cylinder oscillating in transverse direction in steady current,Ocean Engineering, Vol.74,pp.37-47
[14]Shixiao Fu,Yuwang Xu,Ying Chen ,2013. Seabed Effects on the Hydrodynamics of Circular Cylinder Undergoing Vortex Induced Vibration at High Reynolds Number, J.Waterway,Port,Coastal,and Ocean Engineering
[13] Yuwang Xu, Shixiao Fu*, Ying Chen, Qian Zhong, Dixia Fan, 2013. Experiment Investigation on Vortex Induced Forces of Oscillating Cylinder at High Reynolds Number, Ocean System Engineering (ISSN2233-7059), Vol.3, No.3, pp167-180.
[12] Xiqia Chen, Shixiao Fu*, Leijian Song, 2013. Stress Analysis Model for Un-bonded Umbilical Cables, Ocean System Engineering(ISSN2233-7059), Vol3, No.2, pp97-122.
[11] Shixiao Fu*, Yuwang Xu, Ke Hu, Yu Zhang, 2013. Experimental Study on Hydrodynamics of Floating Cylinder in Oscillatory and Constant Flows, Marine Structures(ISSN: 0951-8339), Vol34, pp41-55.
[10] Li Li, Shixiao Fu*, 2013. Nonlinear Hydroelastic Analysis of Aquaculture Fish Cage in Irregular Waves, Marine Structures(ISSN: 0951-8339), Vol34, pp56-73.
[9] Shixiao Fu*, Weicheng Cui, 2012. Dynamic Responses of a Ribbon Floating Bridge Under Moving Loads, Marine Structures(ISSN: 0951-8339), Vol.29, No.1, pp246-256.
[8] Li Li; Shixiao Fu*, Yuwang Xu; Jungao Wang; Jianmin Yang, 2012. Dynamic Responses of Floating Fish Cage in Waves and Current, Ocean Engineering(ISSN:0029-8018), Vol.72, pp297-303.
[7] Shixiao Fu*, Torgeir Moan, 2012. Dynamic analyses of floating fish cage collars in waves, Aquacultural Engineering (ISSN:0144-8609), Vol.47, pp7-15.
[6] Xujun Chen, Torgeir Moan, Shixiao Fu, 2010. Extreme Response of Very Large Floating Structure Considering Second-Order Hydroelastic Effects in Multidirectional Irregular Waves, Journal of Offshore Mechanics and Arctic Engineering(ISSN:0892-7219), Vol.132.
[5] Wang Cong, Shixiao Fu*, Cui Weicheng, 2009. Hydroelasticity Based Fatigue Assessment of the Connector for a Ribbon Bridge Subjected to a Moving Load, Marine Structures(ISSN: 0951-8339) , Vol.22 No.2, pp246-260.
[4] Cong Wang, Shixiao Fu, Weicheng Cui, 2009, Ribbon Bridge in Waves Based on Hydroelasticity Theory, Frontiers of Architecture and Civil Engineering in China(ISSN: 1673-7407), Vol.3 No.1, pp57-62.
[3] Shixiao Fu, Torgeir Moan, Xujun Chen, Weicheng Cui, (2007), Hydroelastic analysis of flexible floating interconnected structures. Ocean Engineering, Vol. 34, 1516–1531
[2] Wang Cong, Fu Shixiao, Li Ning, Cui Weicheng and Lin Zhuming, (2006) Dynamic analysis of a pontoon- separated floating bridge subjected to a moving load. China Ocean Engineering, 20(3): 419-430.
[1] Shixiao Fu, Weicheng Cui, Xujun Chen, Cong Wang, (2005), Hydroelastic analysis of a nonlinearly connected floating bridge subjected to moving loads, Marine Structures, Vol.18, No.1, 85-107.