当前位置: X-MOL首页全球导师 国内导师 › 朱正江

个人简介

Professional Experience 2013 - Present Principal Investigator,Chinese Academy of Sciences, Shanghai, China 2011 - 2013 Postdoctoral Research Associate, The Scripps Research Institute, La Jolla, CA, United States Advisor: Prof. Gary Siuzdak Education 2006 - 2011 Ph.D. in Chemistry, University Of Massachusetts-Amherst, United States Advisor: Prof. Richard W. Vachet and Prof. Vincent M. Rotello 2002 - 2006 B.S. in Chemistry, Nanjing University, China Advisor: Prof. Xing-Hua Xia (夏兴华教授)

研究领域

Metabolites, the chemical entities that are transformed during metabolism, provide a functional readout of cellular biochemistry. With mass spectrometry based metabolomics technique, thousands of metabolites can now be quantitatively measured from minimal amounts of biological material, which has thereby enabled systems-level analyses. By performing global metabolite profiling, new discoveries linking cellular pathways to biological mechanism are being revealed and are shaping our understanding of cell biology, physiology and medicine. Although relatively new compared with its genomic and proteomic predecessors, research in metabolomics has already led to the discovery of biomarkers for disease diagnosis, fundamental insights into cellular biochemistry and clues related to disease pathogenesis. The research in Dr. Zhu lab focuses on the development of mass spectrometry based metabolomics technologies and metabolic phenotyping of various challenging diseases, mainly focusing on aging and aging dependent neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD).

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Ion Mobility-based Sterolomics Reveals Spatially and Temporally Distinctive Sterol Lipids in the Mouse Brain T. Li, Y. Yin, Z. Zhou, J. Qiu, W. Liu, X. Zhang, K. He, Y. Cai, and Z.-J. Zhu* , Nature Communications, 2021, 12: 4343. Serum metabolomics identifies dysregulated pathways and potential metabolic biomarkers for hyperuricemia and gout X. Shen, C. Wang, N. Liang, Z. Liu, X. Li, Z.-J. Zhu, T. Merriman, N. Dalbeth, R.Terkeltaub, C. Li*, and H.Yin* Arthritis & Rheumatology, 2021, https://doi.org/10.1002/art.41733 A serum metabolomics analysis reveals a panel of screening metabolic biomarkers for esophageal squamous cell carcinoma J. Lv, J. Wang, X. Shen, J. Liu, D. Zhao, M. Wei, X. Li, B. Fan, Y. Sun, F. Xue, Z.-J. Zhu*, and T. Zhang* Clinical and Translational Medicine, 2021, https://doi.org/10.1002/ctm2.419 Multi-dimensional Characterization and Identification of Sterols in Untargeted LC-MS Analysis Using All Ion Fragmentation Technology J. Qiu†, T. Li†, and Z.-J. Zhu* , Analytica Chimica Acta, 2021, 1142, 108-117. Exploring the Protective Effects of Danqi Tongmai Tablet on Acute Myocardial Ischemia Rats by Comprehensive Metabolomics Profiling Z. Li, J. Hou, Y. Deng, H. Zhi, W. Wu, B. Yan, T. Chen, J. Tu, Z.J. Zhu, W. Wu*, and D. Guo*, Phytomedicine, 2020, 74, 152918. Subacute Toxicity Study of Nicotinamide Mononucleotide via Oral Administration Y. You, Y. Gao, H. Wang, J. Li, X. Zhang, Z.-J. Zhu, and N. Liu* Frontiers in Pharmacology, 2020, 11, Article no. 604404. Development of A Combined Strategy for Accurate Lipid Structural Identification and Quantification in Ion-Mobility Mass Spectrometry based Untargeted Lipidomics X. Chen†, Y. Yin†, Z. Zhou, T. Li, and Z.-J. Zhu* Analytica Chimica Acta, 2020, 1136, 115-124 Ion Mobility Collision Cross-Section Atlas for Known and Unknown Metabolite Annotation in Untargeted Metabolomics Z. Zhou, M. Luo, X. Chen, Y. Yin, X. Xiong, R. Wang, and Z.-J. Zhu* Nature Communications, 2020, 11: 4334. A lipidome atlas in MS-DIAL 4 H. Tsugawa , K. Ikeda, M. Takahashi , A. Satoh, Y. Mori, H. Uchino, N. Okahashi, Y. Yamada, I. Tada, P. Bonini, Y. Higashi, Y. Okazaki, Z. Zhou, Z.-J. Zhu, J. Koelmel, T. Cajka , O. Fiehn, K. Saito, M. Arita, and M. Arita* Nature Biotechnology, 2020, 38, 1159-1163. The Application of Ion Mobility-Mass Spectrometry in Untargeted Metabolomics: from Separation to Identification M. Luo, Z. Zhou, and Z.-J. Zhu* Journal of Analysis and Testing, 2020, 4, 163-174. NormAE: Deep Adversarial Learning Model to Remove Batch Effects in Liquid Chromatography Mass Spectrometry-Based Metabolomics Data Z. Rong, Q. Tan, L. Cao, L. Zhang, K. Deng, Y. Huang, Z.-J. Zhu, Z. Li, and K. Li* Analytical Chemistry, 2020, 92, 5082-5090. Different Regions of Synaptic Vesicle Membrane Regulate VAMP2 Conformation for the SNARE Assembly C. Wang, J. Tu, S. Zhang, B. Cai, Z. Liu, S. Hou, Q. Zhong, X. Hu, W. Liu, G. Li, Z. Liu, L. He, J. Diao, Z.-J. Zhu, Dan Li *, and C. Liu* Nature Communications, 2020, 11: 1531. Overview of Tandem Mass Spectral and Metabolite Databases for Metabolite Identification in Metabolomics Z. Yi, and Z.-J. Zhu* Methods in Molecular Biology, 2020, 2124, 139-148. Daily Oscillation of the Excitation-Inhibition Balance in Visual Cortical Circuits M.C.D. Bridi, F. J. Zong, X. Min, N. Luo, T. Tran, J. Qiu, D. Severin, X.T. Zhang, G. Wang, Z.-J. Zhu, K.W. He,* and A. Kirkwood* Neuron, 2020, 105, 621-629. The Use of LipidIMMS Analyzer for Lipid Identification in Ion Mobility-Mass Spectrometry-Based Untargeted Lipidomics X. Chen, Z. Zhou, and Z.-J. Zhu* Methods in Molecular Biology, 2020, 2084, 269-282. DecoMetDIA: Deconvolution of Multiplexed MS/MS Spectra for Metabolite Identification in SWATH-MS based Untargeted Metabolomics Y. Yin†, R. Wang †, Y. Cai, Z. Wang, and Z.-J. Zhu* , Analytical Chemistry, 2019, 91, 11897-11904. A Vitamin-C-derived DNA Modification Catalysed by An Algal TET Homologue J. Xue†, G. Chen†, F. Hao†, H. Chen†, Z. Fang, F.-F. Chen, B. Pang, Q. Yang, X. Wei, Q. Fan, C. Xin, J. Zhao, X. Deng, B. Wang, X. Zhang, Y. Chu, H. Tang, H. Yin, W. Ma, L. Chen, J. Ding, E. Weinhold, R. M. Kohli, W. Liu, Z.-J. Zhu, K. Huang*, H. Tang* , and G.-L. Xu* Nature, 2019, 569, 581–585. Metabolic Reaction Network-based Recursive Metabolite Annotation for Untargeted Metabolomics X. Shen, R. Wang, X. Xiong, Y. Yin, Y. Cai, Z. Ma, N. Liu, and Z.-J. Zhu* Nature Communications, 2019, 10: 1516. The Emerging Role of Ion Mobility-Mass Spectrometry in Lipidomics to Facilitate Lipid Separation and Identification J. Tu†, Z. Zhou†,T. Li†, and Z.-J. Zhu* , Trends in Analytical Chemistry, 2019, 116, 332-339. MetFlow: An Interactive and Integrated Workflow for Metabolomics Data Cleaning and Differential Metabolite Discovery X. Shen, and Z.-J. Zhu* Bioinformatics, 2019, 35, 2870-2872.

推荐链接
down
wechat
bug