当前位置: X-MOL首页全球导师 国内导师 › 常照荣

个人简介

河南师大教学名师,电化学研究方向学术带头人,功能材料期刊通讯编委,2012,2014年国际埃尼奖(Eni Award)提名候选人。 Electrochim Acta, Journal of Power Sources, Nanoscale, Nano research, Nanotechnology, ACS Applied Materials & Interfaces, J.Electrochem Soc, Int. J. Hydrogen Energy 等国际SCI期刊审稿人。国家自然科学基金(含重点项目)通讯评审人,青年千人和优青通讯评议专家。 学习经历 1978.03-1982.01 河南师范大学(原新乡师院)化学专业本科 1985.09-1986.07 华南理工大学 物理化学专业 1989.09-1992.06 河南师范大学 物理化学专业硕士 2003.09-2007.06 北京理工大学 环境工程专业博士 工作经历 1982.01-至今 河南师范大学 助教, 讲师, 副教授, 教授, 博士生导师 主讲课程 物理化学 化学动力学基础 电极过程动力学 社会需求 该研究方向注重理论研究与生产实际相结合,注重解决企业在生产实践中遇到的问题,同时追踪国内外最新研究动向,引领企业科技创新。 随着国家新兴产业规划的实施,社会急需新能源、新材料领域的专业人才,因此就读该研究方向的学生极好就业,属于近年来最热门专业。 近5年该研究方向硕士毕业生除了攻读博士外,主要就业于杭州、深圳、珠海、上海和河南等大中型电池和相关材料生产企业,就业质量高。博士毕业生主要在高校从事教学和电化学方向研究。 授权国家发明专利 1. 一种纳米笼状空心类富勒烯二硫化钼及其制备和应用 ZL201510596588.6 2. 一种纳米磷酸锰锂/石墨烯复合材料的制备方法,ZL201510928559.5 3.一种纳米磷酸锰锂/石墨烯/碳复合材料的制备方法,ZL201510928558.0 4.一种全维纳米LiMnPO4颗粒的制备方法,ZL201510928561.2 5.一种全维纳米覆碳LiMnPO4颗粒的制备方法,ZL201510928575.4 6.一种液相制备覆碳球形纳米磷酸铁锂的方法, ZL201110001477.8 7.一种1T相单层二硫化钼纳米片的制备方法,ZL201610698766.0 8.一种1T相单层二硫化钨纳米片的制备方法,ZL201610698729.x 9.一种制备单层1T相二硫化钨/石墨烯复合材料的制备方法,ZL201610698718.1 10.一种制备单层2H相二硫化钼/石墨烯复合材料的制备方法,ZL201610699082.2 11.一种2H相单层二硫化钼纳米片的制备方法,ZL201610698720.9 12.一种制备单层2H相二硫化钼/微纳米碳复合材料的方法,ZL 206110698728.5 13.一种制备单层2H相二硫化钨/石墨烯复合材料的方法,ZL201610698719.6 14.一种掺杂钴锰羟基氧化镍及其制备方法, ZL200610160055.4 15.一种球形氢氧化镍表面金属化的方法,ZL200610160054.X 16.一种铁镍电池用硫化镍包覆四氧化三铁颗粒的制备方法,ZL201710604806.5 主持国家级项目 二维层状类石墨烯过渡金属硫化物MS2(M=Mo, W, Sn)纳米材料的合成及其作为锂离子电池负极材料的应用研究21303042 国家自然基金:低共熔混合锂盐合成高密度锂离子电池正极材料研究21071046 国家863项目:镍氢动力电池正极材料应用技术研究及产业化生产2006AA11A158 国家自然基金:低共熔混合熔盐法合成锂离子电池正极材料锂镍氧系列化合物研究20671031 教学成果 1. 主编《物理化学实验》河南科学技术出版社 2009.08 2. 河南师范大学第二届教学名师奖 3. 获得省级教学成果一、二等奖 4. 硕士研究生代冬梅、左晓霞获得卢金锁奖学金;左晓霞获河南省优秀硕士论文;上官恩波获河南省优秀博士论文 省级成果鉴定 常照荣,李苞,汤宏伟等,高性能三元系锂离子电池正极材料的开发,豫科鉴委字[2013] 第921号 与产业化应用相关的研究和成果 1. 全国最早研发用于镍氢电池正极材料的高活性球形氢氧化镍,并成功实施产业化。 1994年在河南沈丘先达电源材料实施球形氢氧化镍中试,年底通过河南省科技厅中试鉴定,1995年实施批量生产,获得国内贸易部科技进步三等奖和河南省火炬计划奖。1996-1998年期间,协助企业获得国家开发银行1500万元项目资助。 2. 2000年为河南科隆电器股份有限公司培训球形氢氧化镍制备技术人员和实验室建设。2005年受聘科隆公司技术顾问,2006年作为课题副组长协助企业获得“镍氢动力电池正极材料应用技术研制“的国家863计划项目。2012年-2015年期间受聘科隆集团技术副总,负责锂离子电池正极材料的研发工作,2013年协助企业申报成功河南省高性能多元系锂离子电池正极材料产业化重大项目。 3. 1994年-2003年期间从事镍氢电池正极材料-高活性球形氢氧化镍和高密度普通氢氧化镍的研发,在国内外专业期刊发表研究论文40余篇。 4. 2004年-迄今,主要从事锂离子电池正极材料的合成、结构和电化学性能研究,在国内外专业期刊发表研究论文100余篇。研究内容和成果如下: (1)首创的低共融混合锂盐合成镍系及其化合物的锂离子电池正极材料获得国家自然科学基金的2次连续资助,获得了富有成效的成果。目前有多家企业采用该方法进行锂离子电池正极材料的研发和生产。 (2)研发了三元材料前躯体预氧化合成技术,这对于目前的富镍三元正极材料的研究和生产有着重要的作用。 (3)研发了三元材料前躯体金属离子梯度生长和包覆技术,为改善三元材料的循环寿命和高电压性能提供了有效途径。 (4)研发了特有的原位包覆技术可以使得钴酸锂在4.5V充电电压下具有200 mAh g-1的高容量,并具有优异的循环性能。 (5)针对锰酸锂的容量低和高温循环性能差的问题,开展了一系列研究,取得了富有成效的重要成果,相关研究论文发表在国际高水平期刊上。 (6)独特的匹配包覆技术显著改善了LiNi0.5Mn1.5O4材料的比容量和循环性能。 (7)首次提出的常压低温液相合成纳米级磷酸铁锂和磷酸锰锂,获得了很好的效果,多篇论文发表在国际高水平期刊上。 (8)开展了铁镍电池的负极研究,并在容量,循环性能以及倍率性能上取得突破性进展,将四氧化三铁容量从200-300 mAh g-1提升至650 mAh g-1以上,第一放电平台容量可以稳定在400mAh.g-1以上,充电效率可达到93%,为高容量少维护铁镍电池以及密封电池的开发奠定了基础。 (9)独特的掺杂离子和方式显著改善了高镍三元材料的容量以及循环性能。

研究领域

1. 镍氢电池、锂离子电池以及超级电容器等新型化学电源材料研究 2. 功能材料以及纳米材料的合成、结构和电性能研究 面对21世纪能源和环境问题,新型能源体系将发挥巨大的作用。镍氢电池,锂离子电池,燃料电池等各类新型化学储能器和相关储能材料的研究是现代能源体系的前沿课题,新能源以及能源新材料已成为全球经济发展的一个热点。 随着国家新兴产业规划的实施,新能源、新材料和电动汽车已成为未来发展的方向,该研究方向与生产和应用联系紧密,现已成为国内外研究和开发的热点。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

58.Yaolin Hou, Kun Chang, Hongwei Tang, Bao Li, Yan Hou, Zhaorong Chang*, Drastic Enhancement in the Rate and Cyclic Behavior of LiMn2O4 Electrodes at Elevated Temperatures by Phosphorus Doping, Electrochimica Acta, 2019,319:587-595 57. Y. Li, K. Chang, E.B. Shangguan, D.L.Guo, W. Zhou, Y.Hou, H.W.Tang, B. Li, Z.R Chang*, Powder exfoliated MoS2 nanosheets with highly monolayer-rich structures as high-performance lithium-/sodium-ion-battery electrodes, NanoScale, 2019,11:1887-1900 56. Y.Li, K. Chang, H.W.Tang, B. Li, Y.L.Qin, Y.Houa, Z.R.Chang,* Preparation of oxygen-deficient WO3-x nanosheets and their characterization as anode materials for high-performance Li-ion batteries, Electrochimica Acta, 2019, 298:640-641 55.Y.L.Qin,H.W. Tang, K.Chang, B.Li, Y.H.Li, Y.Hou, Z.R. Chang*, In situ synthesis of open hollow tubular MnO/C with high performance anode materials for lithium ion batteries using kapok fiber as carbon matrix, Nanotechnogogy, 2019, 30(1): 015403 54.H.W. Tang, Z.S. Sun, K. Chang, Y.L. Hou, B. Li, Y. Hou, Z.R. Chang*, Uniform carbon coating drastically enhances the electrochemical performance of a Fe3O4 electrode for alkaline nickel iron rechargeable batteries, Int. Journal of Hydrogen Energy, 2019,44:24895-24904 53. Y.Hou, K. Chang, Z.Y.Wang, S.A.Gu, Q.Liu, J.J.Zhang, H.Cheng, S.L. Zhang, Z.R.Chang*, Z.G. Lu*, Rapid microwave-assisted refluxing synthesis of hierarchical mulberry-shaped Na3V2(PO4)2O2F@C as high performance cathode for sodium &lithium-ion batteries. Science China Materials, 2019,62:474-486 [53] X.N.Fu, K.Chang, H.W.Tang, B.Li, Y.H.Li, Z.R.Chang*, Environmentally compatible synthesis of LiMnPO4/RGO using pure water system, Solid State Ionics, 2019,337:115-121 52. Y. Hou, K.Chang*, B.Li, H.W.Tang, Z.Y.Wang, J.L.Zou, H.M.Yuan, Z.G. Lu*, Z.R. Chang*, Highly [010]-oriented self-assembled LiCoPO4/C nanoflakes as high-performance cathode for lithium ion batteries. Nano Research, 2018, 11, 2424–2435. 51. X.X.Zuo, B.Li, K. Chang, H.W.Tang, Z.R. Chang*, Tin-based materials supported on nitrogen-doped reduced graphene oxide towards their application in lithium-ion batteries,RSC Adv., 2017, 7, 53126 50. D.M.Dai, B.Li, K.Chang, H.W.Tang, Z.R.Chang*, A facile and scalable self-assembly strategy to prepare two-dimensional nanoplates:a precursor for a li-rich layered cathode material Li1.2Mn0.54Ni0.13Co0.13O2 with high capacity and rate performance, Electrochimica Acta, 2017,235:632-639 49. X.N.Fu, Z.R.Chang*, K.Chang, H.W.Tang, B.Li, Low-temperature synthesis of LiMnPO4/RGO cathode material with excellent voltage platform and cycle performance,Electrochimica Acta, 2017,225:272-282 48. H.W.Tang, C.X.Zhang, K. Chang, E.B.Shangguan, B.Li, Z.R.Chang*, Synthesis of NiS coated Fe3O4 nanoparticles as high- performance anode materials for alkaline nickel-iron rechargeable batteries, Int.Journal of Hydrogen Energy, 2017,42:24939 -24947 47. X.X.Zuo, K. Chang, J.Zhao, Z.Z. Xie, H.W.Tang, B.Li,Z.R.Chang*,Bubble-template-assisted synthesis of hollow fullerene-like MoS2 nanocages as a lithium ion battery anode material,J. Mater. Chem. A, 2016, 4, 51–58 46. G.L.Fu, K.Chang, B.Li, E.B. Shangguan, H.W.Tang, C.X.Zhang, Z.R.Chang*, X.Z.Yuan,High Rate Performance of Surface Metalized Spherical Nickel Hydroxide via in situ Chemical Reduction,Electrochimica Acta 207 (2016) 28–36 45. D.M.Dai , B.Li, H.W.Tang, K.Chang, K.Jiang, Z.R.Chang*,X.Z.Yuan, Simultaneously improved capacity and initial coulombic efficiency of Li-rich cathode Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by enlarging crystal cell from a nanoplate precursor,Journal of Power Sources 307 (2016) 665-672 44. Z.Z. Xie, K.Chang, B.Li, H.W. Tang, X.N. Fu, Z.R.Chang*, X.Z.Yuan, H.J.Wang,Glucose-Assisted Synthesis of Highly Dispersed LiMnPO4 Nanoparticles at a Low Temperature for Lithium Ion Batteries,Electrochimica Acta 189 (2016) 205–214 43. D.M.Dai, B.Wang, B.Li, F.Li,X.B. Wang,H.W. Tang, Z.R. Chang*, Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 derived from transition metal carbonate with a micro–nanostructure as a cathode material for high-performance Li-ion batteries, RSC Advances, 2016,6:96714-96720 41.Y.Hou,H.W.Tang, B.Li, K.Chang, Z.R.Chang*, X.Z.Yuan, H.J.Wang,Hexagonal-layered Na0.7MnO2.05 via solvothermal synthesis as an electrode material for aqueous Na-ion supercapacitors, Materials Chemistry and Physics, 2016, 171: 137-144 40. B.Li, Y.J.Li, D.M.Dai, K. Chang, H.W.Tang, Z.R.Chang*,C.R.Wang, X.Z. Yuan, H.L. Wang,Facile and Nonradiation Pretreated Membrane as a High Conductive Separator for Li-Ion Batteries,ACS Appl. Mater. Interfaces, 2015, 7, 20184−20189 39,.H.W.Tang, Y.L.Si, K.Chang, X.N.Fu, B.li, E.B.Shangguan, Z.R. Chang*, X.Z.Yuan, H.J. Wang,Carbon gel assisted low temperature liquid-phase synthesis of C-LiFePO4/graphene layers with high rate and cycle performances,Journal of Power Sources 295 (2015) 131-138 38. G.L.Fu, K.Chang, E.B.Shangguan, H.W.Tang, B.Li, Z.R.Chang*, X.Z.Yuan, H.J.Wang Synthesis of CoO/Reduced Graphene Oxide Composite as an Alternative Additive for the Nickel Electrode in Alkaline Secondary Batteries,ElectrochimicaActa 180 (2015) 373–381 37. X.N.Fu, Z.R.Chang*, K.Chang, B.Li, H.W.Tang, E.B.Shangguan, X.Z.Yuan, H.J.Wang,Glucose assisted synthesis of hollow spindle LiMnPO4/C nanocomposites for high performance Li-ion batteries,Electrochimica Acta 178 (2015) 420–428 35.D.L.Guo, X.G.Wei, Z.R.Chang*,X.N.Chen, X.Z. Yuan, H.J.Wang, Synthesis and electrochemical properties of high performance polyhedron sphere like lithium manganese oxide for lithium ion batteries, Journal of Alloys and Compounds, 2015,632:222-228 34.Jing Li , EB Shangguan*, M.Z.Nie, Q.X.Jin, K.Zhao, Z.R.Chang*,X.Z. Yuan, H.J.Wang, Enhanced electrochemical performance of high -density Al-substituted a-nickel hydroxide by a novel anion exchange method using NaCl solution,Int. journal of hydrogen energy,International Journal of Hydrogen Energy, 2015, 40(4): 1852-1858 33.Enbo Shangguan*, Jing Li, D.Guo, L.T.Guo, M.Z.Nie, Z.R.Chang*, X.Z.Yuan, H.J.Wang,A comparative study of structural and electrochemical properties of high-density aluminum substituted α-nickel hydroxide containing different interlayer anions,Journal of Power Sources, 2015,282:158-168 32.D.L.Guo, B.Li, Z.R.Chang*, H.W.Tang, X.H.Xu, K.Chang, E.B.Shangguana, X.Zi.Yuan, H.J.Wang. Facile synthesis of LiAl0.1Mn1.9O4 as cathode material for lithium ion batteries: towards rate and cycling capabilities at an elevated temperature,Electrochimica Acta, 2014, 134: 338-346 31. Jing Li , EB Shangguan*, D.Guo, M.Tian, Y.B.Wang, Q.M.Li, Z.R.Chang*, X.Z.Yuan, H.J.Wang, Synthesis, characterization and electrochemical performance of high-density aluminum substituted a-nickel hydroxide cathode material for nickel-based rechargeable batteries, Journal of Power Sources, 270 (2014) 121-130 30. Jing Li , EB Shangguan*, D.Guo, Q.MLi, Z.R.Chang*,X.Zi.Yuan, H.J. Wang. Calcium metaborate as a cathode additive to improve the hightemperature properties of nickel hydroxide electrodes for nickele metal hydride batteries, J.Power Sources 263 (2014) 110-117 29.D.L. Guo, Z.R.Chang*, B.Li, H.W.Tang, X.Z.Yuan, H.J.Wang,Electrochemical performance of solid sphere spinel LiMn2O4 with high tap density synthesized by porous spherical Mn3O4, Electrochimical Acta,2014,123:254-259 28.H.W.Tang, N.Gao, Z.R.Chang*, B.Li, X.Z. Yuan, H.J.Wang, Electrochemical performance of NaCo2O4 as electrode for supercapacitors,Chinese Chemical Letters,2014,25:269-272 27.E.B.Shangguan*,J.Li,D.Guo, Z.R.Chang*,X.Z.Yuan, H.J.Wang, Effects of different electrolytes containing Na2WO4 on the electrochemical performance of nickel hydroxide electrodes for nickelemetal hydride batteries International Journal of Hydrogen Energy, Int J Hydrogen Energy, 39 (7), (2014) 3412-3422 26. E.B.Shangguan*, J.L.Wang,J.Li, D.Guo, Z.R.Chang*, X.Z.Yuan, H.J.Wang,Enhancement of the high-temperature performance of advanced nickelemetal hydride batteries with NaOH electrolyte containing NaBO2, Int.J. Hydrogen Energy, 2013,38:10616-10624 25.E.B.Shangguan*, J.Li, Z.R.Chang*, H.W.Tang, B.Li, X.Z.Yuan, H.J.Wang,Sodium tungstate as electrolyte additive to improve high-temperature performance of nickelemetal hydride batteries,Int.J. Hydrogen Energy ,2013,38:5133-5138 24.D.L. Guo, Z.R.Chang*,B.Li, H.W.Tang, X.Z.Yuan, H.J.Wang, Synthesis and properties of LiMn2O4 from hydrazine hydrate reduced electrolytic manganese dioxide,Solid State Ionics,2013,237:34-39 23.D.L. Guo, Z.R.Chang*, B.Li, H.W.Tang, X.Z.Yuan, H.J.Wang,Synthesis of high-purity LiMn2O4 with enhanced electrical properties from electrolytic manganese dioxide treated by sulfuric acid-assisted hydrothermal method,J Solid State Electrochem, 2013,17:2849–2856 22.H.W.Tang , Z.R. Chang*, H.L.Zhao, X.Z.Yuan, H.J.Wang, S.Y.Gao, Effects of precursor treatment on the structure and electrochemical properties of spinel LiMn2O4 cathode, J. Alloys and Compounds, 2013,566:16-21 21. Z.R.Chang*, H.W. Tang, Y.Liu,aX.Zi.Yuan, H.J.Wang, S.Y. Gao,Optimization of Synthesis Conditions for LiFePO4/C Nanocomposites by Dimethyl Sulfoxide Assisted Journal of Solution-Phase Method, J.Electrochem Soc, 159 (4) (2012) A331-A335 20. E.B Shangguan, Z.R Chang*, H.W Tang, X.Z Yuan, H.J Wang, Regulation of the discharge reservoir of negative electrodes in Ni–MH batteries by using Ni(OH)x (x = 2.10) and [1]-CoOOH,J.Power Sources,196(2011):7791-7796 19. E.B Shangguan, Z.R Chang*, H.W Tang, X.Z Yuan, H.J Wang, Comparative structural and electrochemical study of high density spherical and non-spherical Ni(OH)2 as cathode materials for Ni-metal hydride batteries. J.Power Sources,196(2011):7797-7805 18.E.B Shangguan, H.W Tang, Z.R Chang*, X.Z Yuan, H.J Wang, Effects of different Ni(OH)2 precursors on the structure and electrochemical properties of NiOOH, Int.J.Hydrogen Energy,36(2011):10057-10064 17.Z.R Chang*, X Yu, H.W Tang, X.Z Yuan, H.J Wang,Synthesis of LiNi1/3Co1/3Al1/3O2 cathode material with eutectic molten salt LiOH-LiNO3, Powder Technology,207(2011):396-400 16.Z.R Chang*, Yao Liu, H.W Tang, X.Z Yuan, H.J Wang, DMSO-Assisted Liquid-phase synthesis of LiFePO4/C Nanocomposites with high-rate Cycling as cathode materials for Lithium ion batteries, Electrochemical and Solid-State Letters,14(6)(2011):A90-A92 15. Z.R Chang*, D.M Dai, H.W Tang, X Yu, X.Z Yuan, H.J Wang,Effects of the Precursor Treated with Reductant or Oxidant on the Structure and Electrochemical Properties of LiNi0.5Mn1.5O4,Electrochimica Acta,2010,55:5506-5510 14. E.B Shangguan, Z.R Chang*, H.W Tang, X.Z Yuan, H.J Wang,Preparation of nickel oxyhydroxide by a new electrolysis method using spherical β-Ni(OH)2,Int.J.Hydrogen Energy,2010,35:3214-3220 13. E.B Shangguan, Z.R Chang*, H.W Tang, X.Z Yuan, H.J Wang,Synthesis and characterization of high-density non-spherical Ni(OH)2 cathode material for Ni–MH batteries,Int.J.Hydrogen Energy,2010, 35:9716-9724 12. Z.R Chang*, H.J Lv, H.W Tang, X.Z Yuan, H.J Wang,Synthesis and performance of high tap density LiFePO4/C cathode materials doped with copper ions,J.Alloys and Compounds, 2010,501:14-17 11. Z.R.Chang*, Z.J.Chen, H.W Tang, X.Z.Yuan, H.J.Wang, Synthesis and characterization of lamellar LiCoO2 as Cathode Materials for Lithium-Ion Batteries,J.New Mat.Systems,2010,13 (2):107-111 10.Z.R.Chang*, H.J.Li, H.W.Tang, X.Z.Yuan, H.J.Wang, Synthesis of γ-CoOOH and its effecte on the positive electrodes of nickel batteries, Int.J.Hydrogen Energy,2009,34:2435-2439 9. Z.R.Chang*, Z.J.Chen, F.Wu, X.Z.Yuan, H.J.Wang,The synthesis of Li(Ni1/3Co1/3Mn1/3)O2 using eutectic mixed lithium salt LiOH-LiNO3, Electrochimica Acta,2009,54:6529-6539 8. Z.R.Chang*, H.J.Lv, H.W.Tang, X.Z.Yuan, H.J.Wang, Synthesis and characterization of high-Density LiFePO4/carbon composites as cathode materials for lithium-ion batteries, Electrochimica Acta,2009,54:4595-4599 7. H.W.Tang, F.S.Zhao, Z.R.Chang*, X.Z.Yuan, H.J.Wang, Synthesisand Electrochemical Properties of High Density LiNi0.8Co0.2-x Tix O2 for Lithium-Ion Batteries, J.The Electrochemical Society, 2009, 156:A478-A482 6. Z.R.Chang*, Z.J.Chen, F.Wu, H.W.Tang, X.Z.Yuan, H.J.Wang,Synthesis and characterization of high-density non-spherical Li(Ni1/3Co1/3Mn1/3)O2 cathode material for lithium ion batteries by two-step drying method,Electrochimica Acta,2008,53(20):5927-5933 5. Z.R.Chang*, Z.J.Chen, F.Wu, H.W.Tang, X.Z.Yuan, H.J.Wang,Preparation of Li(Ni1/3Co1/3Mn1/3)O2 by spherical Ni1/3Mn1/3Co1/3OOH at a low temperature, J.Power Sources, 2008,185:1408-1414 4. Z.R.Chang*, Z.J.Chen, F.Wu, H.W.Tang, X.Z.Yuan, H.J.Wang,Synthesis and characterization of non-spherical LiCoO2 with high tap-density by a two-step drying method,Electrochemical Solid State Lett. 2008,11;A229-232 3. Z.R.Chang*, Z.J.Chen, F.Wu, H.W.Tang, X.Z.Yuan, H.J.Wang,Synthesis and properties of high tap-density cathode material for lithium ion battery by the eutectic molten salt method, Solid State Ionics,2008,179:2274-2277 2. H.W.Tang, H.Z.Zhu, Z.R.Chang*, Z.J.Chen, X.Z.Yuan, H.J.Wang, Synthesis and electrochemical properties of high density LiNi0.8Co0.2O2 prepared by molten-salt synthesis using the eutectic mixture of LiNO3-LiOH, Electrochemical Solid State Lett. 2008,11(3):A34-37 1. J.J.Zhu, Y.B.Chen, T.C.Bai, Y.Lu, Z.R.Chang, D.Q.Wei, G.Stell, Solvent dynamics effect in condensed-phase electron-transfer reactions, J.Phys.Chem.B 2008,112(12):3735

推荐链接
down
wechat
bug