当前位置: X-MOL首页全球导师 国内导师 › 杨书廷

个人简介

动力电源及关键材料国家地方联合工程实验室 主任 河南省动力电源及关键材料工程技术研究中心 主任 动力电源及关键材料河南省协同创新中心 主任 河南省新型电池产业技术创新战略联盟 牵头人 中国硅酸盐学会固态离子学会 副理事长 河南电池研究院 院长 教育经历 2004.9-2007.6 大连理工大学材料加工工程专业获工学博士学位 1986.9-1989.6 河南师范大学物理化学专业获理学硕士学位 1978.9-1982.6 新乡师范学院(即现在的河南师范大学)获学士学位 工作经历 1982.7至今 河南师范大学化学系任教 1991.9 晋升副教授职称 1996.9 晋升教授职称 主讲课程: 《结构化学》、《固体化学》、《固体电化学》、《固体材料结构学》 近年来主持的主要科研项目 1、国家重点科技攻关计划课题:燃料电池电堆多物理量的动静态耦合规律研究,2019-2022,29万; 2、 国家863科技计划:动力锂离子电池新型正极材料及电池关键工艺技术研究,2013-2015,230万; 3、 2014年河南新乡市新能源材料及电池材料战略性新兴产业区域集聚发展试点项目:动力电源及关键材料河南省工程实验室建设项目,2014-2016,1000万; 4、 河南省发改委科技创新专项:18动力电源国家工程实验室科技创新建设专项,2018-2019,50万; 5、 河南省重大科技专项:新材料体系高性能锂离子动力电池单体全产业链关键技术,2012-2014,1000万; 6、 河南省重大科技专项:动力锂离子电池及隔膜材料研发与产业化,2009-2014; 7、 河南省科技攻关计划(国际科技合作):高性能锂硫电池关键材料合成与应用工艺研究,2016-2017,10万。 8、河南省创新型科技团队:动力电源及关键材料2012-2014 获得荣誉与奖励: 1、高比能量动力锂离子电池先进关键材料及应用,河南省科技进步二等奖,2019 2、锂离子电池用隔膜材料的制备及应用,河南省科技进步二等奖,2006 3、锂离子电池锰酸锂正极材料及其生产工艺,河南省科技进步二等奖,2003 4、圆柱密封镍氢(MH/Ni)蓄电池与直封工艺,河南省科技进步二等奖,2000 5、球形(高比重)氢氧化亚镍及其生产工艺,河南省科技进步二等奖,1993 5、锂离子电池用隔膜材料的制备工艺及应用,新乡市科技进步一等奖,2005 6、锂离子系列电池及相关材料的制备及其生产工艺,新乡市科技进步奖一等奖,2004 7、锂离子电池新型正极材料LiFePO4/C制备研究,新乡市科技进步奖二等奖,2007 8、新型可充式3V锂离子电池的制备及应用,新乡市科技进步二等奖,2007 9、高容量镍氢电池新型正极材料球行α-Ni(OH)2的研究,河南省杰出人才创新基金荣誉奖,2001 10、河南省优秀专家,1999 11、河南省“十一五”优秀科技创新人才,2011 12、河南省技术创新先进个人,2012 13、新乡市科学技术重大贡献奖,2011 14、河南省教育系统凝聚力建设先进个人,2017 授权发明专利: 1. 杨书廷,田拴宝,董红玉,等. 一种锂硫电池正极材料、制备方法和锂硫电池,2018. 2. 杨书廷,谷继峰,曹相杰,等. 聚丙烯微孔膜用孔率调节剂、微孔膜及其制备方法,2018. 3. 杨书廷,谷继峰,曹相杰,等. 锂离子电池聚丙烯多孔隔膜及其制备方法,2018 4. 杨书廷,刘玉霞,李向南,等. 一种锡基合金柔性薄膜电极及其制备方法,2017. 5. 杨书廷,刘玉霞,张会双,等. 一种锂离子电池用锡基合金负极板及其制备方法,2017. 6. 杨书廷,尹艳红,朱学海,等. 一种锂离子电池复合隔膜及其制备方法,2016 7. 杨书廷,尹艳红,朱学海,等. 锂离子电池复合隔膜及制备方法,2016 8. 杨书廷,岳红云,吕秀夯,等. 一种锂离子电池用电解液,2015 9. 杨书廷,尹艳红,岳红云,曹朝霞,张会双. 一种锂离子电池正极材料及其制备方法,2013. 10. 杨书廷,王涛,李红安,等. 一种锂铁磷化合物的制备方法,2012

研究领域

1.能源电化学 2.锂离子电池、锂硫电池、燃料电池的关键材料及电池工艺技术研究 3.新型储能系统及关键材料研究

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1.Integrating Polar and Conductive Fe2O3-Fe3C Interface with Rapid Polysulfide Diffusion and Conversion for High-Performance Lithium-Sulfur Batteries[J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11(43): 39772-39781. 2. Pt/NiO Microsphere Composite as Efficient Multifunctional Catalysts for Nonaqueous Lithium-Oxygen Batteries and Alkaline Fuel Cells: The Synergistic Effect of Pt and Ni[J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11(43): 39789-39797. 3. Tuning Primary Particle Growth of Li1.2Ni0.2Mn0.6O2 by Nd-Modification for Improving the Electrochemical Performance of Lithium Ion Batteries[J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7(6): 5946-5952. 4. Organic Alkali Metal Salt Derived Three-Dimensional N-Doped Porous Carbon/Carbon Nanotubes Composites with Superior Li-S Battery Performance[J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7(4): 3995-4003 5. Boron additive passivated carbonate electrolytes for stable cycling of 5 V lithium-metal batteries[J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7(2): 594-602. 6. A soluble single atom catalyst promotes lithium polysulfide conversion in lithium sulfur batteries[J]. CHEMICAL COMMUNICATIONS, 2019, 55(80), 12056-12059. 7. A faster lithium ion diffusion pathway constructed by uniform distribution of sulfur using simple one step spray drying method[J]. CHEMICAL ENGINEERING JOURNAL, 10.1016/j.cej.2019.122353. 8. In situ constructed organic/inorganic hybrid interphase layers for high voltage Li-ion cells[J]. Journal of power sources, 2018, 407: 132-136. 9. Biological Phytic Acid Guided Formation of Monodisperse Large-Sized Carbon@LiFePO4/Graphene Composite Microspheres for High-Performance Lithium-ion Battery Cathodes[J]. Chemical Engineering Journal, 2018, 351: 382-390. 10. A novel modified PP separator by grafting PAN for high-performance lithium-sulfur batteries[J]. Journal of materials science, 2019, 54(1): 1566-1579. 11. Onion-derived N, S self-doped carbon materials as highly efficient metal-free electrocatalysts for the oxygen reduction reaction[J]. Applied Surface Science, 2018, 427:626-634. 12. Direct synthesis of nitrogen and phosphorus co-doped hierarchical porous carbon networks with biological materials as efficient electrocatalysts for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2018, 43: 10341 – 10350. 13. A novel composite solid polymer electrolyte based on copolymer P(LA-co-TMC) for all-solid-state lithium ionic batteries[J]. Solid State Ionics, 2018, 321(8): 8-14. 14. Artificial Interface Derived from Diphenyl Ether Additive for High-Voltage LiNi0.5Mn1.5O4 Cathode[J]. ChemElectroChem, 2018, 5: 1509–1515. 15. High rate capability and long cycle stability of Fe2O3/MgFe2O4 anode material synthesized by gel-cast processing[J]. Chemical Engineering Journal, 2017, 307: 999-1007. 16. Synthesis of Vesicle-Like MgFe2O4/Graphene 3D Network Anode[J]. ACS Sustainable Chem. Eng, 2017, 5(1): 563-570. 17. Rapid calcination synthesis of Zn2SnO4@C/Sn composites for highperformance lithium ion battery anodes[J]. Journal of Alloys and Compounds, 2017, 723: 1018-1025. 18. Facile synthesis of well dispersed spinel cobalt manganese oxides microsphere as efficient bi-functional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2017, 721:482-491. 19. Lithium metal protection through in-situ formed solid electrolyteinterphase in lithium-sulfur batteries: The role of polysulfides on lithium anode[J]. Journal of Power Sources, 2016, 327: 212-220. 20. First-principles and experimental study of nitrogen/sulfur co-doped carbon nanosheets as anode for rechargeable sodium ion batteries[J]. Journal of Materials Chemistry A, 2016, 4, 15565-15574. 21. In Situ Synthesis of Flexible Elastic N-Doped Carbon Foam as Carbon Current Collector and Interlayer for High-Performance Lithium Sulfur Batteries[J]. Journal of Materials Chemistry A, 2016, 4:8636-8644.

推荐链接
down
wechat
bug