研究领域
(1)泛函微分方程的Hopf分支、B-T分支及其他高余维分支
(2)时滞反应扩散方程的分支问题
(3)状态依赖时滞方程的分支问题
(4)分支问题在生物数学、神经网络等模型中的应用
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] Jianzhi Cao*, Hongyan Sun, Bifurcation analysis for the Kaldor–Kalecki model with two delays, Advances in Difference Equations, (2019) 107 1-27. (SCI)
[2] 曹建智,谭 军,王培光*,一类具有时滞的云杉蚜虫种群模型的 Hopf 分岔分析,应用数学和力学, 40(3) (2019) 332-342.
[3] Jianzhi Cao*, Rong Yuan, Bifurcation analysis in a modified Lesile-Gower model with Holling type II functional response and delay, Nonlinear Dynamics, 84 (2016) 1341-1352. (SCI)
[4] Jianzhi Cao*, Peiguang Wang, Rong Yuan, Yingying Mei, Bogdanov-Takens bifurcation for a class of delayed reaction-diffusion system, International Journal of Bifurcation and Chaos, 25(6) (2015) 1-11. (SCI)
[5] Jianzhi Cao*, Rong Yuan, Juan Song, Haijun Jiang, Hopf bifurcation and multiple periodic solutions in a damped harmonic oscillator with delayed feedback, Journal of Computational and Applied Mathematics, 263 (2014) 14-24. (SCI)
[6] Jianzhi Cao*, Rong Yuan, Bogdanov-Takens bifurcation for neutral functional differential equations, Electronic Journal of Differential Equations., Vol. 2013 (2013), No. 252, pp. 1-12. (SCI)
[7] Jianzhi Cao*, Rong Yuan, Multiple bifurcations in a harmonic oscillator with delayed feedback, Neurocomputing, 122 (2013) 172-180.(SCI)
[8] Jianzhi Cao, Haijun Jiang*, Hopf bifurcation analysis for a model of single genetic negative feedback autoregulatory system with delay, Neurocomputing, 99 (2013) 381-389.(SCI)
[9] Jianzhi Cao, Haijun Jiang*, Stability and Hopf bifurcation analysis on Goodwin model with three delays, Chaos Solitons Fractals, 44 (2011) 613-618.(SCI)