个人简介
教育背景
1981.09-1985.07 东北师范大学化学系 化学专业 学士
1989.09-1992.07 吉林大学化学系 物化专业 硕士
1994.03-1997.02 北京理工大学化工与材料学院 应用化学专业 博士
工作履历
1997.02-1998.12 中国科学院高能物理所 博士后、副研究员
1998.12-2001.05 北京航空航天大学材料科学与工程学院 副教授
2001.06 北京航空航天大学首批校长直聘教授
2001.06-2008.05 北京航空航天大学材料科学与工程学院 教授
工作期间
1999.03-2000.03 香港科技大学化学系 访问学者
2001.08-2003.03 德国德累斯顿理工大学 洪堡学者
2008.06-2020.04 北京航空航天大学化学学院 教授、副院长、常务副院长
研究领域
1.过渡金属及化合物微纳米材料的设计制备、微结构及相关特性
2.无机非晶微纳米材料的可控合成及催化和力学特性
3.轻质高强高韧微纳米复合材料的合成及特性
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Multiscale engineered artificial tooth enamel, Science, 2022, 375, 551.
Hierarchically structured diamond composite with exceptional toughness, Nature, 2020, 582, 370.
Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking, Nat. Mater., 2022, 21, 1121.
Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation, Nat. Catal., 2021, 4, 1050.
Realizing two-electron transfer in Ni(OH)2 nanosheets for energy storage, J. Am. Chem. Soc., 2022, 144, 8969.
Activating metal oxides nanocatalysts for electrocatalytic water oxidation by quenching-induced near-surface metal atom functionality, J. Am. Chem. Soc., 2021, 143, 14169.
Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity, J. Am. Chem. Soc., 2019, 141, 5856.
Sub 1 nm nanowire based superlattice showing high strength and low modulus, J. Am. Chem. Soc., 2017, 139, 8579.
Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages, J. Am. Chem. Soc., 2013, 135, 16082.
Synthesis of nickel bowl-like nanoparticles and their doping for inducing planar alignment of a nematic liquid crystal, J. Am. Chem. Soc., 2011, 133, 8389.
Hydrazine-linked convergent self-assembly of sophisticated concave polyhedrons of beta-Ni(OH)2 and NiO from nanoplate building blocks, J. Am. Chem. Soc., 2009, 131, 2959.
Large-scale synthesis of uniform nanotubes of a nickel complex by a solution chemical route, J. Am. Chem. Soc., 2004, 126, 4530.
Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure, J. Am. Chem. Soc., 2002, 124, 14864.
Highly active and stable Li2S-Cu nanocomposite cathodes enabled by kinetically favored displacement interconversion between Cu2S and Li2S, Angew. Chem. Int. Ed., 2022, 61, e202206012.
Rechargeable aqueous aluminum organic batteries, Angew. Chem. Int. Ed., 2021, 60, 5794.
Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S Batteries, Angew. Chem. Int. Ed., 2020, 59, 13071.
SERS activity of semiconductors: crystalline and amorphous nanomaterials, Angew. Chem. Int. Ed., 2020, 59, 4231.
Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution, Angew. Chem. Int. Ed., 2019, 58, 4189.
Electrolyte chemistry enables simultaneous stabilization of potassium metal and alloying anode for potassium-ion batteries, Angew. Chem. Int. Ed., 2019, 58, 16451.
Remarkable SERS activity observed from amorphous ZnO nanocages, Angew. Chem. Int. Ed., 2017, 56, 9851.
A generalized strategy for the synthesis of large-size ultrathin two-dimensional metal oxide nanosheets, Angew. Chem. Int. Ed., 2017, 56, 8766.
Recrystallization-induced self-assembly for the growth of Cu2O superstructures, Angew. Chem. Int. Ed., 2014, 53, 11514.
Achieving delafossite analog by in situ electrochemical self-reconstruction as an oxygen-evolving catalyst, PNAS, 2020, 117, 21906.
Triad (Fe, Co, Ni) nanomaterials: structural design, functionalization and their application, Chem. Soc. Rev., 2015, 44, 6697.
Lin Guo, Amorphous Nanomaterials: Preparation, Characterization and Applications, 2021. Wiley-VCH.