当前位置: X-MOL首页全球导师 国内导师 › 徐世烺

个人简介

徐世烺,博士,浙江大学二级教授,求是特聘教授、博士生导师,浙江大学高性能建筑结构与材料研究所所长,浙江大学建筑工程学院学术委员会主任,2009至2014年任浙江大学建筑工程学院院长。 1979年开始师从我国著名的结构专家赵国藩院士攻读硕士学位,1982年毕业在大连工学院留校任教,1983年晋升讲师。1984年开始攻读博士学位,1988年获大连理工大学博士学位,1990年晋升副教授,1992年3月赴英国威尔斯大学卡迪夫分校做高级访问学者和访问教授,1992年10月转赴德国作洪堡基金博士后研究员,接着在德国斯图加特大学结构材料研究所担任研究工程师和客座教授,2004年2月底全职归国。期间,1995年晋升大连理工大学教授,1996年获得国家杰出青年科学基金,2000年至2005年担任教育部长江学者特聘教授。2005年至2009年大连理工大学特聘教授,2007年晋升为国家专业技术二级教授。2009年调任浙江大学建筑工程学院院长,2010年创建了浙江大学高性能建筑结构与材料研究所并担任首任所长,2009年至今任浙江大学建筑工程学院学术委员会主任。 先后主持和负责国家科技支撑计划,国家重点科技攻关项目、国家自然科学基金重点项目和面上项目、国家973计划项目子课题、南水北调重大工程关键技术与应用研究项目、德国科学基金、国家杰出青年科学基金等项目共30余项。目前主要从事混凝土微纳结构与微纳米技术,高韧性混凝土抗冲击与抗爆性能,混凝土断裂力学理论与工程应用,新型材料与新材料结构,高韧性纤维混凝土研究及应用,纤维编织网增强混凝土,结构破坏过程非线性有限元分析和数值模拟,水工结构与大坝安全性分析的研究工作。 发表论文400余篇,在国际本领域著名期刊和国内一级学会权威期刊发表论文220余篇,其中SCI论文100余篇,EI论文260余篇,出版学术专著5部,论著他引4000余次,2014年至2017年连续四年被Elsevier列入中国高被引学者榜单。获得国家授权发明专利28项。徐世烺教授提出了具有国际原创意义的双K断裂准则和理论,得到38个国家学者的引用和跟踪。国际著名学术组织“国际结构与材料研究所、试验室和专家联合会(RILEM)”成立了“混凝土裂缝扩展的双K断裂准则实验方法”技术委员会,邀请徐世烺教授担任该技术委员会主席并领导制定国际标准。这是第一个以中国人提出的理论命名的RILEM技术委员会,也是首次由中国人担任RILEM技术委员会主席。在国内首创发明了极限拉伸应变高达3%的超高韧性水泥基复合材料。研究成果在国内许多重大工程获得成功应用。 2006年获国务院政府特殊津贴,2000年获教育部长江学者特聘教授,1996年获国家杰出青年科学基金、1992年获德国洪堡奖励基金,1991年获得国家教委与国务院学位委员会联合授予的“中国有突出贡献的博士学位获得者”荣誉称号。1991年教育部列为优秀轻年教师重点跟踪支持对象。1989年获霍英东教育基金会高等学校青年教师奖(研究类)。 以第一获奖人先后获2015年国家自然科学奖二等奖1项,2006年和2012年教育部自然科学奖一等奖2项、2012年浙江省科学技术奖(基础理论类)一等奖1项、2014年教育部技术发明奖一等奖1项,2014年科技部中国产学研合作创新成果奖1项,以第二获奖人获得1999年国家科技进步三等奖1项。此外从1987年起还分别以第一、第二获奖人获得国家教委、辽宁省、湖北省科技进步二等奖4项。 先后为本科生和研究生开设《钢筋混凝土结构设计原理》、《新材料结构》、《土木工程概论》、《混凝土断裂力学》等课程。在研究过程中培养已毕业博士27名、硕士41名,出站博士后10名。目前在站博士后3人,在读博士研究生10人,硕士研究生7人。研究生中有三人获得美国百人会青年英才奖。课题组有3名青年教师获得国家优秀青年基金。 教学与课程 新材料结构(本科生) 混凝土断裂力学(研究生) 著作: 1.徐世烺,赵国藩。混凝土断裂力学研究。大连理工大学出版社,1991年。 2.徐世烺(合著者之一,完成其中两章)。岩石和混凝土断裂力学。中南工业大学出版社,1991年。 3.徐世烺等。混凝土断裂试验和断裂韧度测定的标准方法。机械工业出版社,2010年。 4.徐世烺,李庆华。超高韧性水泥基复合材料在高性能建筑结构中的基本应用。科学出版社,2010年。 5.徐世烺。混凝土断裂力学。科学出版社,2011年。 已获授权国家发明专利: 1.纤维编织网增强自密实混凝土方法,国家发明专利:ZL 200510046304.2,徐世烺,李赫 2.非金属纤维编织网短纤维联合增强水泥基复合材料,国家发明专利:ZL 200510046878.X,徐世烺,李贺东,张秀芳,李庆华。 3.一种超高强砂浆的制备方法,国家发明专利:ZL 200710158900.9,徐世烺,高良丽。 4.一种水泥基导电复合材料的电极制作方法,国家发明专利:ZL 200910010184.9,宋世德,徐世烺,尉文婷,田亚峰 5.一种用纤维编织网和精细混凝土加固建筑结构的方法.国家发明专利:ZL 200910010259.3.徐世烺,尹世平,李庆华。 6.纤维编织网复合钢筋增强混凝土的建筑结构及其制备方法,国家发明专利:ZL 200910010258.9徐世烺,尹世平 7.一种高韧性控裂防渗纤维混凝土,国家发明专利:ZL 200910187472.1,徐世烺 8.一种预应力复合材料叠合大直径管桩及其制造方法,国家发明专利:ZL 201110211298.7,徐世烺侯利军李庆华 9.一种单向龙骨嵌扣式可拼装防裂防渗永久性模板,国家发明专利:ZL 201210162368.9,李庆华徐世烺黄博滔 10.一种互扣式可拼装防裂防渗永久性模板,国家发明专利:ZL 201210158240.5,李庆华徐世烺黄博滔 11.一种双向龙骨嵌扣式可拼装防裂防渗永久性模板,ZL 201210159849.4,黄博滔,李庆华,徐世烺 12.一种基于超高韧性水泥基复合材料的夹芯保温墙体及墙板,国家发明专利:ZL 201210234163.7,徐世烺,李庆华,沈玲华,王激扬 13.一种互扣式可拼装防裂防渗永久性梁模板,国家发明专利:ZL 201210293145.6,李庆华,黄博滔,徐世烺 14.一种螺栓连接式可拼装防裂防渗永久性梁模板,国家发明专利:ZL 201210293543.8,李庆华,黄博滔,徐世烺 15.一种龙骨嵌扣式可拼装防裂防渗永久性柱模板,国家发明专利:ZL 201210295817.7,徐世烺,黄博滔,李庆华 16.一种螺栓连接式可拼装防裂防渗永久性柱模板,国家发明专利:ZL 201210294891.7,李庆华,徐世烺,黄博滔 17.一种非承重式轻质薄壁减震隔墙,国家发明专利:ZL 201210392914.8,王激扬,李庆华,沈玲华,徐世烺 18.一种互扣式可拼装防裂防渗永久性柱模板,国家发明专利:ZL 201210431018.8,李庆华,黄博滔,徐世烺 19.一种纤维编织网增强水泥基复合材料预制管及其制作方法,国家发明专利:ZL 201310177765.8,黄博滔,李庆华,徐世烺 20.一种纤维编织网增强水泥基复合材料永久性梁模板及其制作方法,国家发明专利:ZL 201310178191.6,李庆华,徐世烺,黄博滔 21.一种水泥基复合材料及修补混凝土裂缝的方法,国家发明专利:ZL 201410179915.3,徐世烺,王冰,李贺东,李庆华 22.一种纤维编织网增强水泥基复合材料及其制备方法,国家发明专利:ZL 201410180397.7,徐世烺,李贺东,李庆华 23.一种掺碳纳米管的高强高韧活性粉末混凝土及其制备方法,国家发明专利:ZL 201410260733.9,李庆华,徐世烺,刘金涛 24.能用于喷射的超高韧性水泥基复合材料及其喷射工艺,国家发明专利:ZL 201410394916.X,徐世烺,李庆华,王激扬,周斌,黄博滔 25.一种高耐久性配筋式永久性模板、混凝土结构构件及设计、制造方法,国家发明专利:ZL 201410410102.0,徐世烺,黄博滔,李庆华 26.混凝土喷射涂抹一体化隧道施工装置,国家发明专利:ZL 201510181547.0,李庆华,朱谊,徐世烺,柯锦涛,梁铭耀,吴宇星,王聪诚,黄博滔 27.一种粘结界面II型断裂能的测试方法,国家发明专利:ZL 201410394458.X,李庆华,卢振华,徐世烺,尹友成,李智慧,黄博滔 28.一种适用于普通拉力试验机的纤维粘结性能测试装置,国家发明专利:201510025212.X,徐世烺,李庆华,高翔 29.一种配筋式销结永久性梁模板、混凝土结构构件及制造方法,国家发明专利:ZL 201510845934.X,徐世烺,黄博滔,李庆华,李臣飞 工作研究项目 国家自然科学基金项目:混凝土断裂和损伤的机理,研究期限1983年9月-1987年7月 水利水电科学基金项目:混凝土断裂韧度的尺寸效应,研究期限1984年12月-1988年6月 七五国家重点科技攻关项目:混凝土裂缝的评定技术,研究期限1986年12月至1989年12月 国家教委优秀年轻教师重点跟踪支持对象专项人才基金:纯剪切断裂的裂缝扩展与断裂参数,研究期限1991年1月至1993年12月 德国科学基金会(DFG)资助课题:混凝土KIIc的确定,研究期限1996年6月至1997年10月 德国科学基金会(DFG)资助课题:混凝土II型断裂能,研究期限1997年11月至1998年10月 国家自然科学基金项目:考虑材料断裂特性的结构设计理论,项目起讫时间:1998.01-2000.12 国家自然科学基金项目:基于粘聚力的混凝土II型与复合型双K断裂准则及其参数确定,项目起讫时间:2001.01-2003.12 水工混凝土断裂试验规程编制组委托项目:水工混凝土断裂试验规程制定试验研究,项目起讫时间:2003.11-2005.5 企事业单位委托科技项目:地下隧洞衬砌结构限裂设计的研究,项目起讫时间:2005.10-2008.9 国务院南水北调办公室南水北调工程建设监管中心项目:南水北调工程建设重大关键技术研究及应用“南水北调工程超高韧性绿色ECC新型材料研究及应用”,项目起讫时间:2006.5-2008.6 国家973项目子题:在静载和水压力作用下混凝土断裂准则和破坏机理的研究,项目起讫时间:2003.01-2008.12 国家自然科学基金重点项目:混凝土结构裂缝的形成与发展及控制技术研究,项目起讫时间:2005.01-2008.12 企事业单位委托科技项目:向家坝碾压混凝土迎水面防裂防渗关键技术研究,项目起讫时间:2008.3-2010.6 国家自然科学基金项目:国际材料与结构研究所和实验室联合会-“确定混凝土裂缝扩展双K准则的试验方法”技术委员会第一次全体会,项目起讫时间:2012.1-2014.12 国家自然科学基金项目:国际材料与结构研究所和实验室联合会-“确定混凝土裂缝扩展双K准则的试验方法”技术委员会第二次全体会议,项目起讫时间:2013.4-2014.7 教育部博士点基金:混凝土坝在地震作用下的动态断裂性能研究,项目起讫时间:2011.1-2013.12 国家自然科学基金项目:碳纳米管增强水泥基复合材料研究,项目起讫时间:2010.1-2012.12 浙江省科技重大专项项目:长寿命轻质薄壁自保温装配式墙体,项目起讫时间:2011.7-2014.6 浙江省重大科技创新团队项目:重大工程结构安全防护与健康服役,项目起讫时间:2011.4-2014.3 国家国家支撑计划课题:钢结构建筑防火关键技术,项目起讫时间:2012.1-2015.12 国家973计划课题:复杂环境下碾压混凝土材料性能演变细观机制,项目起讫时间:2013.1-2016.12 企事业单位委托科技项目:采用双K断裂理论分析丹江口大坝裂缝安全性的研究,项目起讫时间:2013.4-2014.4 国家自然科学基金项目:混凝土脆性特征的断裂力学分析及裂缝起裂机理研究,项目起讫时间:2014.1-2017.12 企事业单位委托科技项目:新型超高韧性水泥基复合材料在公路隧道中裂缝控制的应用研究,项目起讫时间:2013.9.-2015.12 企事业单位委托科技项目:轻质自保温非承重水泥夹芯板标准图集与技术规程编制,项目起讫时间:2016.06-2017.12 国家自然科学基金项目:超高韧性水泥基复合材料冲击性能研究,项目起讫时间:2017.1-2020.12 国家自然科学基金项目:基于高掺量碳纳米管的韧性混凝土隐身防护结构基本性能研究,项目起讫时间:2019.1-2022.12 出版著作 徐世烺,赵国藩.混凝土断裂力学研究.大连理工大学出版社,1991. 于骁中等.岩石和混凝土断裂力学.中南工业大学出版社,1991.(合著者之一) 徐世烺等.混凝土断裂试验和断裂韧度测定的标准方法.机械工业出版社,2010. 徐世烺,李庆华.超高韧性水泥基复合材料在高性能建筑结构中的基本应用.科学出版社,2010年. 徐世烺.混凝土断裂力学.科学出版社,2011年. 奖励荣誉 1987年获国家教委科技进步二等奖(排名第二) 1990年获第二届霍英东教育基金会高校青年教师奖(研究类) 1990年被国家教委评为“优秀青年教师重点跟踪支持对象” 1991年获得国家教委和国务院学位委员会联合授予的“作出突出贡献的中国博士学位获得者”荣誉称号 1992年获德国洪堡基金会奖励研究基金 1996年获国家杰出青年科学基金 1996年获国家教委科技进步二等奖(排名第二) 1999年获国家科技进步三等奖(排名第二) 2000年国家教育部长江学者奖励计划特聘教授 2006年国务院政府特殊津贴获得者 2006年教育部自然科学一等奖(第一完成人) 2012年浙江省科学技术奖(基础理论类)一等奖(第一完成人) 2012年教育部自然科学奖一等奖(第一完成人) 2014年教育部技术发明奖一等奖(第一完成人) 2014年科技部中国产学研合作创新成果奖(第一完成人) 2015年国家自然科学奖二等奖(第一完成人)

研究领域

混凝土微纳结构与微纳米技术 新型材料与新材料结构 混凝土断裂力学理论与工程应用 水工结构与大坝安全性分析

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

英文期刊论文: 1.Yao Ding,Ke-Quan Yu,Jiang-tao Yu,Shi-lang Xu,Structural behaviors of ultra-high performance engineered cementitiouscomposites(UHP-ECC)beams subjected to bending-experimental study,Construction&Building Materials,177(2018),102-115. 2.B Wang,Q Li,F Liu,J Wang,S Xu,Shear bond assessment of UHTCC repair using push-out test,Construction&Building Materials,2018,164(10):206-216 3.Shilang Xu,Muhammad Akbar Malik,Zhang Qi,Botao Huang,Qinghua Li,Manas Sarkar,Influence of the PVA fibers and SiO2 NPs on the structural properties of fly ash based sustainable geopolymer,Construction&Building Materials,2018,164(10):238-245 4.Linzhuo Wei,Yichao Wang,Jiangtao Yu,Jianzhuang Xiao,Shilang Xu,Feasibility study of strain hardening magnesium oxychloride cement-based composites,Construction&Building Materials,2018,165(20):750-760 5.Limin Wang,Xia Li,Shilang Xu,Haiying Wang,Zhaojun Zhang,Micro-crack damage in strip of fracture process zone,International Journal of Solids and Structures,2018,147(15):29-39. 6.S Xu,Y Feng,J Liu,Q Zeng,Y Peng,Microfracture Characterization of Cement Paste at Early Age by Indentation Test,Journal of Materials in Civil Engineering(ASCE),2018,30(6) 7.Zhang,Qi,S.Xu,and Q.Zeng,Residual compressive strength of hardened OPC/CAC paste after fire exposure,Magazine of Concrete Research(2018):1-31. 8.Wang Bing,Li Qinghua,Liu Fei,Xu Shilang,Zhou Hougui,and Tan Kaiyan,Comparison of Cast-In-Situ and Prefabricated UHTCC Repair Systems under Bending,Journal of Materials in Civil Engineering(ASCE),,2018,30(1):04017249. 9.Huang,Bo-Tao;Li,Qing-Hua;Xu,Shi-Lang;Li,Chen-Fei,Development of reinforced ultra-high toughness cementitious composite permanent formwork:Experimental study and Digital Image Correlation analysis.Composite Structures,2017,180:892-903. 10.Li,Hedong;Zeng,Qiang;Xu,Shilang,Effect of pore shape on the thermal conductivity of partially saturated cement-based porous composites.Cement and Concrete Composites,2017,81:87-96. 11.Huang,Bo-Tao;Li,Qing-Hua;Xu,Shi-Lang;Bao-Min Zhou,Frequency Effect on the Compressive Fatigue Behavior of Ultrahigh Toughness Cementitious Composites:Experimental Study and Probabilistic Analysis.Journal of Structural Engineering(ASCE),2017,143(8):04017073. 12.Zeng,Qiang;Feng,Ying;Xu,Shilang,A discussion of“Application of nano-indentation methods to estimate nanoscale mechanical properties of shale reservoir rocks”by K Liu,M Osatadhassan and B Bubach.Journal of Natural Gas Science and Engineering,2017,42:187-189. 13.Yin,Shiping;Wang,Bo;Wang,Fei;Xu,Shilang,Bond investigation of hybrid textile with self-compacting fine-grain concrete.Journal of Industrial Textiles,2017,46(8):1616-1632. 14.Hou,Lijun;Liu,Hong;Xu,Shilang;Zhuang Ning;Chen Da.Effect of corrosion on bond behaviors of rebar embedded in ultra-high toughness cementitious composite.Construction and Building Materials,2017,138:141-150. 15.Yu,Kequan;Wang,Yichao;Yu,Jiangtao;Xu,Shilang,A strain-hardening cementitious composites with the tensile capacity up to 8%.Construction and Building Materials,2017,137:410-419. 16.Zeng,Qiang;Xu,Shilang.A two-parameter stretched exponential function for dynamic water vapor sorption of cement-based porous materials.Materials and Structures,2017,50(2):128. 17.S Yin,B Wang,F Wang,S Xu,Bond investigation of hybrid textile with self-compacting fine-grain concrete,Journal of Industrial Textiles,2017,46(8):1616-1632. 18.Li,Qinghua;Huang,Botao;Xu,Shilang;Zhou Baomin;Yu Rena C.,Compressive fatigue damage and failure mechanism of fiber reinforced cementitious material with high ductility.Cement and Concrete Research,2016,90:174-183. 19.Liu,Wen;Xu,Shilang;Feng,Peng,Fatigue damage propagation models for ductile fracture of ultrahigh toughness cementitious composites.International Journal of Damage Mechanics,2016:1056789516635727. 20.Li,Qinghua;Gao,Xiang;Xu,Shilang;Peng,Yu;Fu,Ye,Microstructure and Mechanical Properties of High-Toughness Fiber-Reinforced Cementitious Composites after Exposure to Elevated Temperatures,Journal of Materials In Civil Engineering(ASCE),2016,28(11):04016132. 21.Gonzalo Ruiz,JoséJ.Ortega,Rena C.Yu,Shilang Xu,Yao Wu,Effect of size and cohesive assumptions on the double-K fracture parameters of concrete,Engineering Fracture Mechanics,166(2016),198–217. 22.Qinghua Li,Xin Zhao,Shilang Xu,Influence of steel fiber on dynamic compressive behavior of hybrid fiber ultra high toughness cementitious composites at different strain rates,Construction and Building Materials,(125)2016,490-500. 23.Qinghua Li,Botao Huang,Shilang Xu,Baomin Zhou,Rena C.Yu,Compressive fatigue damage and failure mechanism of fiber reinforced cementitious material with high ductility,Cement and Concrete Research,90(2016)174-183. 24.Yao Wu,Shilang Xu,Qinghua Li,Gonzalo Ruiz,Rena C.Y,Estimation of real fracture parameters of a dam concrete with large size aggregates through wedge splitting tests of drilled cylindrical specimens,Engineering Fracture Mechanics,163(2016)23–36. 25.Qinghua Li,Botao Huang,and Shilang Xu,Development of Assembled Permanent Formwork Using Ultra High Toughness Cementitious Composites(UHTCC),Advances in Structural Engineering,2016,19(7)1142-1152. 26.Qinghua Li,Xiang Gao,Shilang Xu.Multiple effects of nano-SiO2 and hybrid fibers on properties of high toughness fiber reinforced cementitious composites with high-volume fly ash.Cement and Concrete Composites,72(2016)201-212. 27.Xu,Shilang;Shen,Linghua;Wang,Jiyang,The high-temperature resistance performance of TRC thin-plates with different cementitious materials:Experimental study,Construction and Building Materials,115(7)2016,506-519. 28.Li,Qinghua;Xu,Shilang;Zeng,Qiang,The effect of water saturation degree on the electrical properties of cement-based porous material,Cement&Concrete Composities,70(5)2016,35-47. 29.Wang,Bing;Xu,Shilang;Liu,Fei,Evaluation of tensile bonding strength between UHTCC repair materials and concrete substrate,Construction and Building Materials,112(1)2016,595-606. 30.Yan,Dongming;Chen,Shikun;Zeng,Qiang;Xu,Shilang;Li,Hedong,Correlating the elastic properties of metakaolin-based geopolymer with its composition,Materials&Design,95(4)2016,306-378. 31.Xu,Shilang;Malik,Muhammad Akbar;Li,Qinghua;Wu,Yao,Determination of double-K fracture parameters using semi-circular bend test specimens,Engineering Fracture Mechanics,152(2)2016,58-71. 32.Wang,Zhendi;Zeng,Qiang;Wang,Ling;Li,Kefei;Xu,Shilang;Yao,Yan,Characterizing frost damages of concrete with flatbed scanner,Construction and Building Materials,102(1)2016,872-883. 33.Qinghua Li,Shilang Xu and Qiang Zeng.A Fractional Kinetic Model for Drying of Cement-Based Porous Materials.Drying Technology,2016,34(10):1231-1242. 34.Zeng Q,Xu S.Thermodynamics and Characteristics of Heterogeneous Nucleation on Fractal Surfaces.The Journal of Physical Chemistry C,2015,119(49):27426-27433. 35.Hou L,Xu S,Liu H,Flexural and Interface Behaviors of Reinforced Concrete/Ultra-high Toughness Cementitious Composite(RC/UHTCC)Beams.Journal of Advanced Concrete Technology,2015,13(2):82-93. 36.Shen L,Xu S,Wang J.Mechanical behaviour of TRC thin-plates exposed to high temperature:experimental study,Magazine of Concrete Research,2015,67(21):1135-1149. 37.Qiang Zeng,Shilang Xu.Discussion of'Numerical simulation of moisture transport in concrete based on a pore size distribution model'.Cement and Concrete Research,73(2015),63-66. 38.Shilang Xu,Jintao Liu,Qinghua Li.Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste.Construction and Building Materials,76(2015),16-23. 39.Jianying Wu,Fengbo Li,Shilang Xu.Extended embedded finite elements with continuous displacement jumps for the modeling of localized failure in solids.Computer Methods in Applied Mechanics and Engineering,285(2015),346–378. 40.Liu,Jintao;Li,Qinghua;Xu,Shilang,Influence of nanoparticles on fluidity and mechanical properties of cement mortar,Construction and Building Materials,101(12)2015,892-901. 41.Hu,Shaowei;Zhang,Xiufang,Xu,Shilang,Effects of loading rates on concrete double-K fracture parameters,Engineering Fracture Mechanics,149(11)2015,58-73. 42.Liu,Wen;Luo,Lu;Xu,Shilang;Zhao,Honghua,Effect of fiber volume fraction on crack propagation rate of ultra-high toughness cementitious composites,Engineering Fracture Mechanics,2014,52-63. 43.Wen Liu and Shilang Xu.Flexural fatigue damage model of ultra-high toughness cementitious composites,International Journal of Damage Mechanics,(9)2014,949-963. 44.Hou,Li-jun;Xu,Shilang;Zhang,Xiu-fang,Shear Behaviors of Reinforced Ultrahigh Toughness Cementitious Composite Slender Beams with Stirrups,Journal of Materials in Civil Engineering(ASCE),26(3)2014,466-475. 45.Yin,Shiping;Xu,Shilang;Lv,Henglin,Flexural Behavior of Reinforced Concrete Beams with TRC Tension Zone Cover,Journal of Materials in Civil Engineering(ASCE),26(2)2014,320-330. 46.Wen Liu,Shilang Xu and Qinghua Li.Flexural behavior of UHTCC-layered concrete composite beam subjected to static and fatigue loads,Fracture and Fatigue of Engineering Materials and Structures,RILEM,36(8)(2013),738-749. 47.Shilang Xu,Wen Liu and Qinghua Li.Deformation calculation of ultra-high toughness cementitious composite-concrete beam under flexure fatigue with ultra-high toughness cementitious composite fatigue damage model,International Journal of Damage Mechanics,22(1)(2013),128-144. 48.Jianying Wu,Shilang Xu.Reconsideration on the elastic damage/degradation theory for the modeling of microcrack closure-reopening(MCR)effects,International Journal of Solids and Structures,50(5)(2013),795–805. 49.Shilang Xu and Wen Liu.Investigation on crack propagation law of ultra-high toughness cementitious composites under fatigue flexure,Engineering Fracture Mechanics,93(2012),1-12. 50.Hou Lijun,Xu Shilang,Zhang Xiufang.Toughness evaluation of ultra-high toughness cementitious composite specimens with different depths,Magazine of Concrete Research,64(12)(2012),1079-1088. 51.Shiliang Xu,Lijun Hou and Xiufang Zhang.Shear Behavior of Reinforced Ultrahigh Toughness Cementitious Composite Beams without Transverse Reinforcement,Journal of Materials in Civil Engineering(ASCE),24(10)(2012),1283–1294. 52.Shilang Xu,Nan Wang and Xiufang Zhang.Flexural Behavior of Plain Concrete Beams Strengthened with Ultra High Toughness Cementitious Composites Layer,Materials and Structures,RILEM,45(6)(2012),851-859. 53.Shilang Xu,Lijun Hou and Xiufang zhang.Flexural and shear behaviors of reinforced ultrahigh toughness cementitious composite beams without web reinforcement under concentrated load,Engineering Structures,39(2012),176-186. 54.Shilang Xu,Xiufang Zhang and Hans W.Reinhardt.Shear Capacity Prediction of Reinforced Concrete Beams without Stirrups Using Fracture Mechanics Approach,ACI Structural Journal,109(5)(2012),705-713. 55.Wen Liu,Shilang Xu,Qinghua Li.Experimental study on fracture performance of ultra-high toughness cementitious composites with J-integral,Engineering Fracture Mechanics,96(2012),656-666. 56.Xiufang Zhang,Shilang Xu and Christopher K.Y.Leung.Influences of Tensile Longitudinal Reinforcement Ratio and Ductile Layer Thickness on Flexural Mechanical and Cracking Behavior of UHTCC/RC Layered Composite Beam,Advances in Structural Engineering,15(2)(2012),319-330. 57.Xiufang Zhang and Shilang Xu.A comparative study on five approaches to evaluate double-K fracture toughness parameters of concrete and size effect analysis,Engineering Fracture Mechanics,78(10)(2011),2115-2138. 58.Hedong Li and Shilang Xu.Determination of energy consumption in the fracture plane of Ultra High Toughness Cementitious Composite with direct tension test,Engineering Fracture Mechanics,78(9)(2011),1895-1905. 59.Jianying Wu and Shilang Xu.An augmented multicrack elastoplastic damage model for tensile cracking,International Journal of Solids and Structures,48(18)(2011),2511-2518. 60.Shilang Xu,Wenting Yu and Shide Song.Numerical simulation and experimental study on electrothermal properties of carbon/glass fiber hybrid textile reinforced concrete,Science in China Series E:Technological Sciences,54(9)(2011),2421-2428. 61.Xiangrong Cai and Shilang Xu.A statistical micromechanical model of multiple cracking for Ultra High Toughness Cementitious Composites,Engineering Fracture Mechanics,78(6)(2011),1091-1100. 62.Qinghua Li and Shilang Xu.A design concept with the use of RUHTCC Beam to improve crack control and durability of Concrete structures,Materials and Structures,RILEM,44(6)(2011),1151-1177. 63.Qinghua Li and Shilang Xu.Experimental Research on Mechanical Performance of Hybrid Fiber Reinforced Cementitious Composites with Polyvinyl Alcohol Short Fiber and Carbon Textile,Journal of Composite Materials,45(1)(2011),5-28. 64.Shilang Xu and Xiangrong Cai.Experimental Study and Theoretical Models on Compressive Properties of Ultra High Toughness Cementitious Composites,Journal of Materials in Civil Engineering(ASCE),22(10)(2010),1067-1077. 65.Shilang Xu and Shiping Yin.Analytical theory of flexural behavior of concrete beam reinforced with textile-combined steel,Science in China Series E:Technological Sciences,53(6)(2010),1700-1710. 66.Jun Zhang,Christopher K.Y.Leung and Shilang Xu.Evaluation of Fracture Parameters of Concrete from Bending Test Using Inverse Analysis Approach,Materials and Structures,RILEM,43(6)(2010),857-874. 67.Shilang Xu,Liangli Gao and Weijun Jin.Production and mechanical properties of aligned multi-walled carbon nanotubes-M140 composites,Science in China Series E:Technological Sciences,52(7)2009),2119-2127. 68.Qinghua Li and Shilang Xu.Experimental investigation and analysis on flexural performance of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites,Science in China Series E:Technological Sciences,52(6)(2009),1648-1664. 69.Shilang Xu and Xiufang Zhang.Theoretical analysis and experimental investigation on flexural performance of steel reinforced ultrahigh toughness cementitious composite(RUHTCC)beams,Science in China Series E:Technological Sciences,52(4)(2009),1068-1089. 70.Shilang Xu and Qinghua Li.Theoretical Analysis on Bending Behavior of Functionally Graded Composite Beam Crack-Controlled by Ultrahigh Toughness Cementitious Composites,Science in China Series E:Technological Sciences,52(2)(2009),363-378. 71.Shilang Xu and Yu Zhu.Experimental determination of fracture parameters for crack propagation in hardening cement paste and mortar,International Journal of Fracture,157(1-2)(2009),33–43. 72.Shilang Xu and Xiufang Zhang.Determination of fracture parameters for crack propagation in concrete using an energy approach,Engineering Fracture Mechanics,75(15)(2008),4292-4308. 73.Yanhua Zhao,Shilang Xu and Zhimin Wu.Variation of fracture energy dissipation along evolving fracture process zones in concrete,Journal of Materials in Civil Engineering(ASCE),19(8)(2007),625-633. 74.Shilang Xu,Yanhua Zhao and Zhimin Wu.Study on the Average Fracture Energy for Crack Propagation in Concrete,Journal of Materials in Civil Engineering(ASCE),18(6)(2006),817-824. 75.Limin Wang,Shilang Xu and Xiqiang Zhao.Analysis on cohesive crack opening displacement considering the strain softening effect,Science In China Series G:Physics Mechanics&Astronomy,49(1)(2006),88-101. 76.Shilang Xu,M.Krueger,Hans W.Reinhardt and J.Ozbolt.Bond characteristics of carbon,alkali resistant glass,and ararnid textiles in mortar,Journal of Materials in Civil Engineering(ASCE),16(4)(2004),356-364. 77.Liming Wang and Shilang Xu.Analysis on the Cohesive Stress at Half Infinite Crack Tip,Applied Mathematics and Mechanics,24(8)(2003),917-927. 78.Liming Wang,Haoran Chen and Shilang Xu.Conservation Law and Application of J-Integral in Multi-Materials,Applied Mathematics and Mechanics,22(10)(2001),1216-1224. 79.Weiming Liu and Shilang Xu.A New Improved Uzawa Method for Finite Element Solution of Stokes Problem,Computational Mechanics,27(4)(2001),305-310. 80.Hans W.Reinhardt and Shilang Xu.A practical testing approach to determine mode II fracture energy G(IIF)for concrete,International Journal of Fracture,105(2)(2000),107-125. 81.Shilang Xu and Hans W.Reinhardt.A Simplified Method for Determining Double-K Fracture Parameters for Three-Point Bending Tests,International Journal of Fracture,104(2)(2000),181-209. 82.Hans W.Reinhardt and Shilang Xu.Crack Extension Resistance Based on the Cohesive Force in Concrete,Engineering Fracture Mechanics,64(5)(1999),563-587. 83.Shilang Xu and Hans W.Reinhardt.Determination of Double-K Criterion for Crack Propagation in Quasi-Brittle Materials part III:Compact Tension Specimens and Wedge Splitting Specimens,International Journal of Fracture,98(2)(1999),179-193. 84.Shilang Xu and Hans W.Reinhardt.Determination of Double-K Criterion for Crack Propagation in Quasi-Brittle Materials,part II:Analytical Evaluating and Practical Measuring Methods for Three-Point Bending Notched Beams,International Journal of Fracture,98(2)(1999),151-177. 85.Shilang Xu and Hans W.Reinhardt.Determination of Double-K Criterion for Crack Propagation in Quasi-Brittle Materials,part I:experimental investigation of crack propagation,International Journal of Fracture,98(2)(1999),111-149. 86.Shilang Xu and Hans W.Reinhardt.Crack Extension Resistance and Fracture Properties of Quasi-Brittle Softening Materials Like Concrete Based on the Complete Process of Fracture,International Journal of Fracture,92(1)(1998),71-99. 87.Hans W.Reinhardt and Shilang Xu.Experimental determination of KIIc of normal strength concrete,Materials and Structures,RILEM,31(209)(1998),296-302. 88.Hans W.Reinhardt,J.Ozbolt,Shilang Xu and A.Dinku.Shear of Structural Concrete Members and Pure Mode II Testing,Advanced Cement Based Materials,5(1997),75-85. 89.Shilang Xu,Hans-W.Reinhardt and Murat Gappoev.Mode II fracture testing method for highly orthotropic materials like wood,International Journal of Fracture,75(3)(1996),185-214. 90.Shilang Xu and Ben Barr.A Probability Model of Fracture in Concrete and Size Effects on Fracture Toughness,Magazine of Concrete Research,47(173)(1995),311-320. 重要中文期刊论文: 土木工程学报与建筑结构学报: 1.徐世烺、赵国藩,混凝土断裂韧度的概率模型研究,土木工程学报,21(4)(1988),9-23; 2.徐世烺、赵国藩,巨型试件断裂韧度和高混凝土坝裂缝评定的断裂韧度准则,土木工程学报,24(2)(1991),1-9; 3.徐世烺、赵国藩,混凝土结构裂缝扩展的双K断裂准则,土木工程学报,25(2)(1992),32-38; 4.赵志方、徐世烺,混凝土软化本构曲线形状对双K断裂参数的影响,土木工程学报,34(5)(2001),29-34; 5.贾金青、徐世烺、赵国藩,配箍率对钢骨高强混凝土短柱轴压力系数限值影响的试验研究,土木工程学报,35(6)(2002),39-43; 6.贾金青、徐世烺,钢骨高强混凝土短柱轴压力系数限值的试验研究,建筑结构学报,24(1)(2003),14-19; 7.赵艳华、徐世烺、吴智敏,混凝土结构裂缝扩展的双G准则,土木工程学报,37(10)(2004),13-18、51、91; 8.徐世烺、张秀芳,混凝土结构裂缝扩展全过程的新GR阻力曲线断裂判据,土木工程学报,39(10)(2006),20-31; 9.徐世烺、周厚贵、高洪波、赵守阳,各种级配大坝混凝土双K断裂参数试验研究,土木工程学报,39(11)(2006),50-62; 10.李赫、徐世烺,纤维编织网增强混凝土薄板力学性能的研究,建筑结构学报,28(4)(2007),117-122; 11.姜睿、徐世烺、贾金青,高轴压比PVA纤维超高强混凝土短柱延性的试验研究,土木工程学报,40(8)(2007),54-60; 12.徐世烺、李庆华、李贺东,碳纤维编织网增强超高韧性水泥基复合材料弯曲性能的试验研究,土木工程学报,40(12)(2007),69-76; 13.徐世烺、卜丹、张秀芳,不同尺寸楔入式紧凑拉伸试件双K断裂参数的试验测定,土木工程学报,41(2)(2008),70-76; 14.徐世烺、李贺东,超高韧性水泥基复合材料研究进展及其工程应用,土木工程学报,41(6)(2008),45-60; 15.张秀芳、徐世烺,采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究(1):基本理论,土木工程学报,41(12)(2008),48-54; 16.徐世烺、王建敏,水压作用下大坝混凝土裂缝扩展与双K断裂参数,土木工程学报,42(2)(2009),119-125; 17.徐世烺、李贺东,超高韧性水泥基复合材料直接拉伸试验研究,土木工程学报,42(9)(2009),32-41; 18.徐世烺、蔡新华、李贺东,超高韧性水泥基复合材料抗冻耐久性能试验研究,土木工程学报,42(9)(2009),42-46; 19.张秀芳、徐世烺,采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究(II):试验研究,土木工程学报,42(10)(2009),53-66; 20.徐世烺、蔡向荣、张英华,超高韧性水泥基复合材料单轴受压应力-应变全曲线试验测定与分析,土木工程学报,42(11)(2009),79-85; 21.张秀芳、徐世烺、侯利军,配筋率对RUHTCC梁弯曲性能的影响研究,土木工程学报,42(12)(2009),16-24; 22.李贺东、徐世烺,超高韧性水泥基复合材料弯曲性能及韧性评价方法,土木工程学报,43(3)(2010),32-39; 23.李庆华、徐世烺,钢筋增强超高韧性水泥基复合材料弯曲性能计算分析与试验研究,建筑结构学报,31(3)(2010),51-61; 24.张秀芳、徐世烺,超高韧性水泥基复合材料控裂钢筋混凝土复合梁正截面承载力计算,建筑结构学报,31(3)(2010),62-69; 25.徐世烺、刘建强、张秀芳,水工有压隧洞衬砌双K断裂理论分析及裂缝宽度计算,土木工程学报,43(1)(2010),114-124; 26.徐世烺、王楠、李庆华,超高韧性水泥基复合材料增强普通混凝土复合梁弯曲性能试验研究,土木工程学报,43(5)(2010),17-22; 27.张秀芳、徐世烺、李贺东,超高韧性水泥基复合材料增强普通混凝土复合梁弯曲性能的理论分析,土木工程学报,43(7)(2010),51-62; 28.徐世烺、尹世平、蔡新华,纤维编织网增强混凝土加固钢筋混凝土梁受弯性能研究,土木工程学报,44(4)(2011),23-34; 29.徐世烺、蔡新华,超高韧性水泥基复合材料取代保护层混凝土梁抗锈蚀性能研究,土木工程学报,44(5)(2011),79-85; 30.徐世烺、王楠、蔡新华,集中荷载作用下后浇UHTCC简支双向混凝土板的试验研究,土木工程学报,44(8)(2011),33-41; 31.徐世烺、王楠、尹世平,超高韧性水泥基复合材料加固钢筋混凝土梁弯曲控裂试验研究,建筑结构学报,32(9)(2011),115-122; 32.刘问、徐世烺、李庆华,等幅疲劳荷载作用下超高韧性水泥基复合材料弯曲疲劳寿命试验研究,建筑结构学报,33(1)(2012),119-127; 33.徐世烺、尹世平,纤维编织网增强细粒混凝土加固RC受弯构件的正截面承载性能研究,土木工程学报,45(1)(2012),1-7; 34.艾珊霞;尹世平;徐世烺;纤维编织网增强混凝土的研究进展及应用,土木工程学报,(01)2015,27-40 35.李庆华;高翔;徐世烺;赵昕;纳米改性超高韧性水泥基复合材料保温防渗永久性模板研究,土木工程学报,(6)2015,9-16 36.李庆华,黄博滔,周宝民,徐世烺.超高韧性水泥基复合材料单轴压缩疲劳性能研究,建筑结构学报,37(1),2016,135-142 37.沈玲华;王激扬;徐世烺;掺入短切纤维的纤维编织网增强混凝土薄板弯曲力学性能试验研究,建筑结构学报,(10)2016,98-107 38.侯利军;刘泓;徐世烺;陈达;锈蚀钢筋与钢纤维混凝土的黏结性能试验研究.建筑结构学报,38(7),146-155. 39.徐世烺;熊松波;李贺东;吕瑶;混凝土断裂参数厚度尺寸效应的定量表征与机理分析.土木工程学报,2017,50(5):57-71. 水利学报与水力发电工程学报: 40.徐世烺,混凝土断裂韧性的试验及分析,水利学报,(6)(1982),61-66; 41.徐世烺,混凝土断裂韧度的概率统计分析,水利学报,(10)(1984),51-58; 42.徐世烺、赵国藩,混凝土裂缝的稳定扩展过程与临界裂缝尖端张开位移,水利学报,(4)(1989),33-44; 43.徐世烺、赵国藩、黄承逵、刘毅、王凤翼、靳国礼,混凝土大型试件断裂能GF和缝端应变场,水利学报,(1)(1991),17-25; 44.徐世烺、赵国藩,光弹性贴片法研究混凝土裂缝扩展过程,水力发电学报,(3)(1991),8-17; 45.吴智敏、赵国藩、徐世烺,大尺寸混凝土试件的断裂韧度,水利学报,(6)(1997),67-76; 46.吴智敏、徐世烺、王金来,基于虚拟裂缝模型砼双K断裂参数,水利学报,(7)(1999),12-16; 47.吴智敏、徐世烺、王金来、刘毅,三点弯曲梁法研究砼K断裂参数及其尺寸效应,水力发电学报,(4)(2000),35-39; 48.吴智敏、徐世烺、卢喜经、刘毅,试件初始缝长对混凝土双K断裂参数的影响,水利学报,(4)(2000),35-39; 49.赵志方、徐世烺,试件尺寸对混凝土新KR阻力曲线的影响,水利学报,(12)(2001),48-55; 50.赵志方、徐世烺,混凝土强度对基于粘聚力的新KR阻力曲线的影响,水力发电学报(3)(2001),11-21; 51.吴智敏、徐世烺、刘佳毅,光弹贴片法研究裂缝扩展和双K断裂参数的尺寸效应,水利学报,(4)(2001),34-39; 52.徐世烺、赵艳华、吴智敏、高洪波,楔入劈拉法研究混凝土断裂能,水力发电学报,(4)(2003),15-22; 53.徐世烺、赵艳华,混凝土II型断裂与破坏过程的三维非线性有限元数值模拟,水力发电学报,23(5)(2004),15-21; 54.赵艳华、徐世烺、聂玉强,混凝土断裂能的边界效应,水利学报,36(11)(2005),1320-1325; 55.徐世烺、张秀芳、郑爽,小骨料混凝土双K断裂参数的实验测定,水利学报,37(5)(2006),26-36; 56.李赫、徐世烺,纤维编织网增强混凝土(TRC)的基体开发和优化,水力发电学报,25(3)(2006),76-80; 57.高洪波、徐世烺、吴智敏、卜丹,混凝土断裂韧度KIIc的试验研究,水力发电学报,25(5)(2006),68-73; 58.徐世烺、喻常雄、李庆华,混凝土大坝接缝灌浆的剪切断裂过程及其断裂韧度测定,水利学报,38(3)(2007),300-305; 59.徐世烺、卜丹、张秀芳,楔入式紧凑拉伸法确定混凝土的断裂能,水利学报,38(6)(2007),683-689; 60.徐世烺、王建敏,静水压力下混凝土双K断裂参数试验测定,水利学报,38(7)(2007),792-798; 61.徐世烺、朱榆、张秀芳,水泥净浆和水泥砂浆材料的Ⅰ型断裂韧度测定,水利学报,39(1)(2008),41-46; 62.张秀芳、徐世烺,采用荷载-裂缝张开口位移曲线确定混凝土三点弯曲梁的断裂能,水利学报,39(6)(2008),714-719; 63.张滇军、徐世烺、郝红曼,基于碳纤维混凝土(CFRC)机敏性的三点弯曲梁断裂参数试验研究,水力发电学报,27(2)(2008),71-77; 64.徐世烺、蔡向荣,超高韧性纤维增强水泥基复合材料基本力学性能,水利学报,40(9)(2009),1055-1063; 65.徐世烺、尹世平、蔡新华,纤维编织网增强混凝土加固钢筋混凝土受弯梁的抗裂性能研究,水利学报,41(7)(2010),833-840; 66.徐世烺、刘志凤,超高韧性水泥基复合材料干缩性能及其对抗裂能力的影响,水利学报,41(12)(2010),1491-1496; 67.徐世烺、李军,四点剪切梁法研究混凝土I-II复合型起裂准则及其缝高比影响规律,水利学报,42(9)(2011),1110-1116; 68.侯利军;陈达;孙晋永;徐世烺;RC/UHTCC复合梁的弯曲与界面性能试验研究,水利学报,(S1)2014,100-107 69.徐世烺;董丽欣;王冰伟;李庆华;我国混凝土断裂力学发展三十年,水利学报,(S1)(45)2014,1-9 70.尹世平;盛杰;徐世烺;疲劳荷载下纤维编织网增强混凝土加固RC梁的弯曲性能,水利学报,(12)2014,1481-1486 71.徐世烺;周斌;李庆华;吴宇星;喷射超高韧性水泥基复合材料的力学性能研究,水利学报,(05)2015,619-625 72.吴瑶;徐世烺;吴建营;吴德绪;颜天佑;双K断裂准则在丹江口大坝安全性评定中的应用,水利学报,(03)2015,366-372 73.闫东明;刘康华;李贺东;徐世烺;带初始损伤混凝土的动态抗压性能研究,水利学报,(09)2015,1110-1127 74.李庆华,周宝民,黄博滔,徐世烺,应建坤.超高韧性水泥基复合材料(UHTCC)抗压性能的尺寸效应研究,水利学报,46(2)(2015),174-182. 75.闫东明;陈士堃;徐世烺;钢筋-地聚合物混凝土黏结性能研究,水利学报,(9)2016,1167-1176 工程力学等力学类期刊: 76.赵国藩、徐世烺、王凤翼,大骨料全级配混凝土断裂韧度和断裂能研究,工程力学,增刊(1996),51-62; 77.吴智敏、王金来、徐世烺、刘毅,基于虚拟裂缝模型的砼等效断裂韧度,工程力学,17(1)(2000),99-104; 78.王利民、陈浩然、徐世烺、赵光远、蒲琪,裂纹垂直于双相介质界面时的应力强度因子,计算力学学报,18(1)(2001),33-36; 79.王利民、徐世烺、陈浩然,裂纹端部细短纤维的应力分析,力学学报,34(2)(2002),200-207; 80.徐世烺、王利民、赵艳华,准脆性材料裂纹中远场桥联筋的应力与变形,工程力学,19(3)(2002),132-136; 81.赵艳华、徐世烺,I-II复合裂纹脆性断裂的最小J2准则,工程力学,19(4)(2002),94-98; 82.赵志方、徐世烺、周厚贵,混凝土软化本构关系对双K断裂参数的影响,工程力学,19(4)(2002),149-154; 83.徐世烺、Reinhardt HW、Markus Krueger,高性能精细混凝土与碳纤维织物粘接性能研究,工程力学,增刊(2002),95-104; 84.徐世烺、吴智敏、丁生根,砼双K断裂参数的实用解析方法,工程力学,20(3)(2003),54-61; 85.王利民、徐世烺,混凝土断裂过程区的虚拟裂纹粘聚力奇异性,应用力学学报,21(1)(2004),30-35; 86.张滇军、徐世烺,短纤维增强混凝土应力传递剪滞理论的改进,工程力学,22(6)(2005),165-169; 87.王利民、任传波、徐世烺、赵熙强,一类Fredholm型弱奇性核积分方程展开解,物理学报,55(2)(2006),543-546; 88.贾金青、姜睿、徐世烺、孙根勤、厚童,超高强混凝土短柱抗震性能的试验研究,地震工程与工程振动,26(6)(2006),120-126; 89.赵艳华、聂玉强、徐世烺,混凝土断裂能的边界效应确定法,工程力学,24(1)(2007),56-61; 90.高淑玲、徐世烺,单边切口薄板研究聚乙烯醇纤维增强水泥基复合材料断裂韧性,工程力学,24(11)(2007),12-18; 91.张秀芳、徐世烺,用能量方法研究混凝土断裂过程区的力学性能,工程力学,25(7)(2008),18-23; 92.徐世烺、王洪昌,超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究,工程力学,25(11)(2008),53-61; 93.徐世烺、赵艳华,混凝土裂缝扩展的断裂过程准则与解析,工程力学,25(S2)(2008),20-33; 94.张秀芳、徐世烺,不同软化曲线形状对裂缝扩展阻力GR曲线的影响,工程力学,26(2)(2009),5-9; 95.吴香国、徐世烺、吴明喜,超高性能纤维改性混凝土断裂参数研究与应用,工程力学,26(3)(2009),93-98; 96.张秀芳、徐世烺,钢筋增强超高韧性水泥基复合材料梁的弯曲承载力及延性分析,工程力学,26(12)(2009),133-141; 97.李庆华、徐世烺,超高韧性水泥基复合材料基本性能和结构应用研究进展,工程力学,26(S2)(2009),23-67; 98.徐世烺、蔡向荣,UHTCC薄板弯曲荷载-变形硬化曲线与单轴拉伸应力-应变硬化曲线对应关系研究,工程力学,27(1)(2010),8-16; 99.徐世烺、蔡向荣,UHTCC单轴受压韧性的试验测定与评价指标,工程力学,27(5)(2010),218-239; 100.李庆华、徐世烺,钢筋增强超高韧性水泥基复合材料受弯构件理论分析,工程力学,27(7)(2010),92-102; 101.张秀芳、徐世烺,钢筋增强超高韧性水泥基复合材料(RUHTCC)梁弯曲性能影响的几何参数分析,工程力学,27(2)(2010),78-95; 102.苏骏、徐世烺、毕辉,UHTCC新型梁柱节点抗震性能试验研究,地震工程与工程振动,30(2)(2010),59-63; 103.高洪波、徐世烺、吴智敏、卜丹,双K断裂模型粘聚韧度KIcc实用插值计算方法,计算力学学报,27(1)(2010),47-52; 104.李庆华、徐世烺,超高韧性水泥基复合材料在受弯构件中应用研究,工程力学,(S2)(2010),235-239; 105.尹世平、徐世烺,钢筋与纤维编织网联合增强细粒混凝土梁的弯曲试验与理论研究,工程力学,28(1)(2011),87-95; 106.徐世烺、张秀芳、卜丹,混凝土裂缝扩展过程中裂尖张开口位移(CTOD)与裂缝嘴张开口位移(CMOD)的变化关系分析,工程力学,28(5)(2011),64-70; 107.张秀芳、徐世烺,权函数法计算的混凝土断裂韧度,工程力学,28(4)(2011),58-62; 108.朱榆、徐世烺,超高韧性水泥基复合材料加固混凝土三点弯曲梁断裂过程的研究,工程力学,28(3)(2011),69-77; 109.侯利军、张秀芳、徐世烺,拉伸应变硬化UHTCC材料的弯曲变形分析,工程力学,28(8)(2011),9-16; 110.徐世烺、吴瑶,用实用解析法计算混凝土基于裂缝粘聚力的新K_R阻力曲线,工程力学,28(9)(2011),84-89; 111.刘问;徐世烺;李庆华,超高韧性水泥基复合材料延性断裂性能评价准则的试验研究,工程力学,(09)2013,63-69 112.刘问;徐世烺;李庆华,超高韧性水泥基复合材料疲劳裂缝扩展公式的理论与试验研究,工程力学,(11)2013,67-74 113.吴瑶;李庆华;徐世烺,楔入劈拉试验传力途径解析与传力装置设计,工程力学,(S1)2014,17-21 114.高翔;李庆华;徐世烺;邵康;安玉鹏;宋炳辰,高性能水泥基纳米胶凝材料渗透性能及孔径分布试验研究,工程力学,(S1)2014,265-268 115.侯利军;陈达;徐世烺;张秀芳;正常使用状态下RUHTCC梁的弯曲变形预测,工程力学,(11)2014,183-189 116.沈玲华;王激扬;徐世烺;付晔;不同胶凝材料的精细混凝土高温后力学性能,工程力学,(6)2015,248-260 117.徐世烺;余秀丽;李庆华;电测法确定低强混凝土裂缝起裂和等效裂缝长度,工程力学,(12)2015,84-89 118.王激扬;沈玲华;徐世烺;钢纤维TRC薄板的常温及高温后弯曲力学性能,工程力学,(S1)2016,6-17 119.罗璐,刘问,徐世烺,任贇跃.基于连续损伤力学的UHTCC疲劳损伤扩展模型研究,工程力学,(1)2017,22-27 120.李庆华;赵昕;徐世烺;纳米二氧化硅改性超高韧性水泥基复合材料冲击压缩试验研究.工程力学,2017,34(2):85-93. 复合材料学报与建筑材料学报: 121.王利民、陈浩然、徐世烺、赵光远,双相介质界面附近裂纹的断裂力学特征,复合材料学报,17(3)(2000),78-82; 122.徐世烺、李赫,碳纤维编织网和高性能细粒混凝土的粘结性能,建筑材料学报,9(2)(2006),211-215; 123.徐世烺、李赫,用于纤维编织网增强混凝土的自密实混凝土,建筑材料学报,9(4)(2006),481-483; 124.张滇军、徐世烺、孙进,碳纤维砂浆与碳纤维混凝土导电性能实验研究,建筑材料学报,9(3)(2006),347-352; 125.张滇军、徐世烺,基于碳纤维混凝土机敏性的Ⅱ型断裂试验研究,建筑材料学报,10(4)(2007),484-487; 126.吴香国、韩相默、徐世烺,超高性能水泥基复合材料弯拉作用下虚拟应变硬化机制分析,复合材料学报,25(2)(2008),129-134; 127.徐世烺、蔡新华,超高韧性水泥基复合材料碳化与渗透性能试验研究,复合材料学报,27(3)(2010),177-183; 128.尹世平、徐世烺,提高纤维编织网保护层混凝土抗剥离能力的有效方法,建筑材料学报,13(4)(2010),468-473; 129.侯利军,张秀芳,徐世烺,试件厚度对超高韧性水泥基复合材料弯曲性能的影响,复合材料学报,28(4)(2011),171-179; 130.徐世烺、阎轶群,低配网率纤维编织网增强混凝土轴拉力学性能,复合材料学报,28(5)(2011),206-213; 131.尹世平、徐世烺、王楠,多层纤维编织网增强混凝土梁的挠度计算,建筑材料学报,14(1)(2011),14-21; 132.尹世平、徐世烺、王菲,纤维编织网在细粒混凝土中的黏结和搭接性能,建筑材料学报,15(1)(2012),34-41; 133.尹世平、徐世烺,纤维编织网增强混凝土拉伸力学模型的研究,复合材料学报,29(5)(2012),222-229; 134.李庆华;徐松杰;徐世烺;吕瑶;柯锦涛;吴宇星;采用碳纳米管提高纤维砂浆的起裂断裂韧度,建筑材料学报,(05)2016,1-7 135.李庆华;徐松杰;徐世烺;吕瑶;柯锦涛;吴宇星;采用碳纳米管提高纤维砂浆的起裂断裂韧度.建筑材料学报,2016,37(1):135-142. 中国公路学报: 136.徐世烺、王楠,后浇UHTCC加固既有混凝土复合梁的弯曲控裂性能,中国公路学报,24(3)(2011),36-43; 137.徐世烺、刘问,超高韧性水泥基复合材料疲劳损伤模型的试验研究,中国公路学报,,24(6)(2011),1-8; 138.徐世烺、黄婷婷、宋世德,编织网增强混凝土受弯性能及电阻稳定性研究,中国公路路学报,25(5)(2012),1-5; 139.刘问;徐世烺,超高韧性水泥基复合材料/混凝土复合梁在弯曲疲劳荷载下的变形计算,中国公路学报,(1)2014,77-83

学术兼职

浙江省重点科技创新团队负责人兼首席科学家,国际结构与材料研究所与实验室及专家联合会(RILEM)TDK技术委员会主席,RILEM中国分会副主席,中国复合材料学会理事,中国材料研究会理事,浙江省土木建筑学会副理事长,中国绿色建材技术创新战略联盟副理事长兼专家委员会副主任。曾任中国水力发电工程学会和中国水利学会岩石混凝土断裂分委员会主任委员。先后担任国家863、973项目、国家重点研发计划项目、国家自然基金重大项目和国家科技部创新领军人才评审专家

推荐链接
down
wechat
bug