当前位置: X-MOL首页全球导师 国内导师 › 李显方

个人简介

曾获荣誉: 湖南省121人才工程第二层次人选 湖南省普通高校学科带头人 李显方,男,1964年11月出生,汉族,博士,博士后,中南大学“升华学者计划” 特聘教授,博士生导师。北京理工大学博士研究生毕业,国防科技大学力学博士后出站。入选湖南省121人才工程第二层次,湖南省普通高校学科带头人。美国Vanderbilt大学、澳大利亚Sydney大学、韩国Yonsei大学和加拿大Alberta大学做访问学者。现任Heliyon等几种刊物编委。长期从事力学学科相关的教学和科研工作,在智能材料与结构、多场耦合力学、微纳米力学及断裂力学等方面开展了系统的研究工作。主持国家自然科学基金等多项,获省级自然科学奖2次,湖南省优秀博士学位论文指导老师2次,授权发明专利4项,发表SCI学术论文2百余篇。2014-2018连续多年入选Elsevier中国高被引学者榜(材料力学领域)。 教育经历 [1] 1996.9-1999.7 北京理工大学 博士学位 | 博士研究生毕业 [2] 1985.9-1987.12 北京科技大学 硕士学位 | 硕士研究生毕业 [3] 1981.9-1985.7 湖南师范大学 学士学位 | 大学本科教育 工作经历 [1] 2004.4-至今 中南大学 [2] 2018.9-2018.10 加拿大Alberta大学 [3] 2008.7-2008.12 韩国Yonsei大学 [4] 2007.3-2008.3 澳大利亚Sydney大学 [5] 2004.9-2005.1 美国Vanderbilt大学 [6] 2003.2-2003.10 韩国Yonsei大学 [7] 2001.9-2004.7 国防科技大学 [8] 1999.7-2004.3 湖南师范大学 [9] 1987.12-1996.8 中南工业大学 科研项目 [1]分数阶反常扩散下湿热弹性复合材料的断裂 [2]考虑表面效应微纳米尺度板的断裂研究,国家自然科学基金项目 [3]T应力及其对裂纹扩展路径的影响,国家自然科学基金项目 [4]含裂纹压电体的动态响应行为的研究,国家自然科学基金项目 著作成果 [1]变形介质力学[译著].郭瑞平(译),廖日东,李显方,范天佑,科学出版社,2020 专利成果 [1]一种预存应力筋增强复合材料及其制造方法 [2]一种无裂纹涂层纤维的制备方法 [3]复合结构预存应力筋增强陶瓷基复合材料及其制造方法 [4]压电晶体谐振器电极形状设计方法 获奖信息 [1]弹性偏微分方程组的边值问题及求解方法研究 [2]智能材料与结构的可靠性分析及无线供能机理研究 [3]湖南省“优秀博士学位论文”指导教师

研究领域

[1] 断裂力学 [2] 微纳米力学 [3] 多场耦合力学 [4] 智能材料与结构

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1]Wei-Li Ma, Xian-Fang Li, Kang Yong Lee.Third-order shear deformation beam model for flexural waves and free vibration of pipes:J. Acoust. Soc. Am. 147, 1634-1647, 2020. [2]Wei-Li Ma, Zi-Cheng Jiang, Kang-Yong Lee, Xian-Fang Li.A refined beam theory for bending and vibration of functionally graded tube-beams:Compos. Struct. 236, 111878, 2020. [3]Y. Huang, X.-F. Li.Exact and approximate solutions of convective-radiative fins with temperature-dependent thermal conductivity using integral equation method:Int. J. Heat Mass Transfer. 150, 119303, 2020. [4]S.-X. Zhou, X.-F. Li.Smooth interface crack of two bonded dissimilar orthotropic elastic media under shear loading:Eur. J. Mech. / A Solids 81, 103935, 2020 [5]S. Xiang, K. Y. Lee, X.-F. Li.Elasticity solution of functionally graded beams with consideration of the flexoelectric effect:J. Phys. D: Appl. Phys. 53(10), 105301, 2020. [6]Y. Yang, Z.-L. Hu, X.-F. Li.Nanoscale mode-III interface crack in a bimaterial with surface elasticity:Mech. Mater. 140, 103246, 2020. [7]Y Peng, X-Y Zhang, X-F Li.Transient hygrothermoelastic response in a porous cylinder subjected to ramp-type heat-moisture loading:J Thermal Stresses, 42, 1499-1514, 2019. [8]B.J. Xiao, X.F. Li.Exact solution of buckling load of axially exponentially graded columns and its approximation:Mech. Res. Comm. 101, 103414, 2019 [9]X.-Y. Zhang, Z.-T. Chen, X.-F. Li.Generalized fractional heat conduction in one-dimensional functionally graded materials:J. Thermophys. Heat Transfer 33, 946-956, 2019 [10]X-F Li, K Y Lee.Nonclassical axisymmetric bending of circular Mindlin plates with radial force:Meccanica 54, 1623-1645, 2019 [11]Xue-Yang Zhang, Xian-Fang Li.Transient response of a functionally graded thermoelastic plate with a crack via fractional heat conduction:Theo. Appl. Fract. Mech. 104, 102318, 2019 [12]Ying Yang, Xian-Fang Li.Bending and free vibration of a circular magnetoelectroelastic plate with surface effects:Int. J. Mech. Sci. 157-158, 858-871, 2019 [13]Y.-B. Zhou, X.-F. Li.Fracture analysis of an infinite 1D hexagonal piezoelectric quasicrystal plate with a penny-shaped dielectric crack.Eur. J. Mech. A/Solids 76, 224-234, 2019 [14]X.-F. Li.Effect of surface elasticity on stress intensity factors near the mode-III crack tips:J. Mech. Mater. Struct. 14(1), 43-60, 2019 [15]Xue-Yang Zhang, Zeng-Tao Chen, Xian-Fang Li.Non-Fourier fractional heat conduction in two bonded dissimilar materials with a penny-shaped interface crack:Int. J. Therm. Sci. 140, 319-328, 2019 [16]Q.-X. Xiao, X.-F. Li.Flutter and vibration of elastically restrained nanowires under a nonconservative force:ZAMM, 99(3), e201700325, 2019 [17]X.-Y. Zhang, Y-J. Xie, X.-F. Li.Transient thermoelastic response in a cracked strip of functionally graded materials via generalized fractional heat conduction:Appl. Math. Modell. 70, 328-349, 2019 [18]S.-X. Zhou, X.-F. Li.Interfacial debonding of an orthotropic half-plane bonded to a rigid foundation:Int. J. Solids Struct. 161, 1-10, 2019 [19]D.-L. Sun, X.-F. Li.Initial value method for free vibration analysis of axially-loaded functionally graded non-uniform Timoshenko beams:Mech. Based Des. Struct. Mach. 47, 102-120, 2019 [20]X.-Y. Zhang, Y. Peng, Y-J. Xie, X.-F. Li.Hygrothermoelastic response of a hollow cylinder based on a coupled time-fractional heat and moisture transfer model:ZAMP 70, 2, 2019 [21]Y.-B. Zhou, X.-F. Li.A Yoffe-type moving crack in one-dimensional hexagonal piezoelectric quasicrystals:Appl. Math. Modell. 65, 148-163, 2019 [22]X.-Y. Zhang, Z.-T. Chen, X.-F. Li.Thermal shock fracture of an elastic half-space with a subsurface penny-shaped crack via fractional thermoelasticity:Acta Mech. 229, 4875-4893, 2018 [23]J. Zhang, X.-F. Li.Bending of piezoelectric beams with the flexoelectric effect under applied load at any position:Mod. Phys. Lett. B. 32(30), 1850372, 2018 [24]S. Xiang, X.-F. Li.Elasticity solution of the bending of beams with the flexoelectric and piezoelectric effects:Smart Mater. Struct. 27, 105023, 2018 [25]Q.X. Xiao, X.-F. Li.Flutter and divergence instability of rectangular plates under nonconservative forces considering surface elasticity:Int. J. Mech. Sci. 149, 254-261, 2018 [26]J. Zou, X. F. Li.Effect of the Casimir force on buckling of a double-nanowire system with surface effects:Int. J. Struct. Stab. Dyn. 18(10), 1850118, 2018 [27]X.-Y. Zhang, Y. Peng, X.-F. Li.Time-fractional hygrothermoelastic problem for a sphere subjected to heat and moisture flux:J. Heat Transfer 140, 122002, 2018 [28]Z.-L. Hu, K. Y. Lee, X.-F. Li.Crack in an elastic thin-film with surface effect:Int. J. Eng. Sci.:123, 158-173, 2018 [29]Y. Peng, X.-Y. Zhang, Y.-J. Xie, X.-F. Li.Transient hygrothermoelastic response in a cylinder considering non-Fourier hyperbolic heat-moisture coupling:Int. J. Heat Mass Transfer.:126, 1094-1103, 2018 [30]Y. Yang, K.Y. Lee, X.-F. Li.Surface effects on delamination of a thin film bonded to an elastic substrate:Int. J. Fract.:210: 81-94, 2018 [31]Y. Yang, J. Zou, K. Y. Lee, X.-F. Li.Bending of circular nanoplates with consideration of surface effects:Meccanica:53: 985-999, 2018 [32]Z.L. Hu, X. F. Li.A rigid line inclusion in an elastic film with surface elasticity:ZAMP:69, 92, 2018 [33]Y.-B. Zhou, X.-F. Li.Exact solution of two collinear cracks normal to the boundaries of a 1D layered hexagonal piezoelectric quasicrystal:Phil. Mag.:98: 1780-1798, 2018 [34]X.-F. Li, S.-N. Jiang, K. Y. Lee.Surface effects on dynamic stability of microcantilevers on an elastic foundation under a subtangential follower force:Int. J. Mech. Mater. Des.:14, 91-104, 2018 [35]C.N. Xie, X.F. Li.Optimal location of ring support for heavy Mindlin plates under axisymmetric loading:J. Mech. Eng. Sci.:232: 1270-1279, 2018 [36]W.S. Li, J. Zou, K.Y. Lee, X.F. Li.Asymmetric trapped modes in a tube waveguide with a bulge:Acta Mech.:229: 1123-1136, 2018 [37]W. Shi, J. Zou, K.Y. Lee, X. F. Li.Size-dependent resonance frequencies of cantilevered and bridged nanosensors:Mod. Phys. Lett. B.:32: 1850095, 2018 [38]Y.-B. Zhou, X.-F. Li.Two collinear mode-III cracks in one-dimensional hexagonal piezoelectric quasicrystal strip:Eng. Fract. Mech.:189, 133-147, 2018 [39]J. Zou, X.F. Li.Effects of the Casimir force and surface elasticity on the natural frequencies of cantilever AFM probes:Acta Acust. u. Acust.:104, 87-93, 2018 [40]X.-F. Li, K.Y. Lee.Effects of Engesser's and Haringx's hypotheses on buckling of Timoshenko and higher-order shear-deformable columns:ASCE J. Eng. Mech.:144: 04017150, 2018 [41]X.-Y. Zhang, X.-F. Li.Thermal shock fracture of a cracked thermoelastic plate based on time-fractional heat conduction:Eng. Fract. Mech.:171, 22 - 34, 2017 [42]D.Q. Chen, D.L. Sun, X.F. Li.Surface effects on resonance frequencies of axially functionally graded Timoshenko nanocantilevers with attached nanoparticle:Compos. Struct.:173, 116-126, 2017 [43]X. Yuan, S. Zhu, X.F. Li*, C. Chen, K.C. Zhou, D. Zhang.Mechanical performance of piezoelectric fiber composites and electroelastic field concentration near the electrode edges:Mater. Des.:128, 71-79, 2017 [44]X.-F. Li, Z.-B. Shen, K. Y. Lee.Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia:ZAMM:97: 602-616, 2017 [45]X.-F. Li, G.-J. Tang, Z.-B. Shen, K. Y. Lee.Size-dependent resonance frequencies of longitudinal vibration of a nonlocal Love nanobar with a tip nanoparticle:Math. Mech. Solids:22: 1529-1542, 2017 [46]J-X Wu, X-F Li, A-Y Tang, K Y Lee.Free and forced transverse vibration of nanowires with surface effects:J. Vib. Contr.:23: 2064-2077, 2017 [47]X.-Y. Zhang, X.-F. Li.Transient thermal stress intensity factors for a circumferential crack in a hollow cylinder based on generalized fractional heat conduction:Int. J. Therm. Sci.:121, 336-347, 2017 [48]X.-Y. Zhang, X.-F. Li.Transient response of a hygrothermoelastic cylinder based on fractional diffusion-wave theory:J. Thermal Stresses:40: 1575-1594, 2017 [49]Q.-X. Xiao, J. Zou, K. Y. Lee, X.-F. Li.Surface effects on flutter instability of nanorod under generalized follower force:Struct. Eng. Mech.:64: 723-730, 2017 [50]W. Shi, X.-F. Li, C.Y. Wang.Bending of a rectangular plate with rotationally restrained edges under a concentrated force:Appl. Math. Comp.:286, 265-278, 2016 [51]D.-L. Sun, X.-F. Li, C.Y. Wang.Buckling of standing tapered Timoshenko columns with varying flexural rigidity under combined loadings:Int. J. Struct. Stab. Dyn.:16: 1550017, 2016 [52]W.-S. Li, J. Zou, K. Y. Lee, X.-F. Li.Trapped modes in an infinite or semi-infinite tube with a local enlargement:Ultrasonics:71, 59–68, 2016 [53]D.-K. Li, X.-F. Li.Large deflection and rotation of Timoshenko beams with frictional end supports under three-point bending:C. R. Mec.:344: 556-568, 2016 [54]X.-F. Li, J. Zou, S.-N. Jiang, K. Y. Lee.Resonant frequency and flutter instability of a nanocantilever with the surface effects:Compos. Struct.:153: 645-653, 2016 [55]X.-F. Li, K. Y. Lee.Fracture of a thin power-law nonlinear material with a crack using the DCB model:Int. J. Fract.:201: 119-125, 2016 [56]W. Shi, Z.-B. Shen, X.-L. Peng, X.-F. Li.Frequency equation and resonant frequencies of free-free Timoshenko beams with unequal end masses:Int. J. Mech. Sci.:115-116:406-415,2016 [57]X.F. Li, T.Y. Fan.Dislocations in the second kind two-dimensional quasicrystals of soft matter:Phys. B.:502, 175-180, 2016 [58]Y. Huang, X.-F. Li.Effect of radial reaction force on the bending of circular plates resting on a ring support:Int. J. Mech. Sci.:119, 197-207, 2016 [59]X.-F. Li, G.-J. Tang, Z.-B. Shen, K.Y. Lee.Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory:Ultrasonics:55, 75-84, 2015 [60]W. Shi, X.-F. Li, K.Y. Lee.Transverse vibration of free-free beams carrying two unequal end masses:Int. J. Mech. Sci.:90, 251-257, 2015 [61]S. Zhu, D. Zhang, K.-C. Zhou, X.-F. Li.Effects of nonhomogeneity on singular electroelastic field near electrodes for a functionally graded piezoelectric material:Eur. J. Mech. - A/Solids:51, 21-28, 2015 [62]P. Chu, X.-F. Li, Z.-G. Wang, K.Y. Lee.Double cantilever beam model for functionally graded materials based on two-dimensional theory of elasticity:Eng. Fract. Mech.:135, 232-244, 2015 [63]X.-F. Li, G-J Tang, Z-B Shen, K Y Lee.Interface crack embedded in a bi-material plane under shear and compression:Mech. Mater.:85, 80-93, 2015 [64]J.X. Wu, X.F. Li.Effect of an elastic substrate on buckling of free-standing nanocolumns:ZAMM:95: 396-405, 2015 [65]P. Chu, X.-F. Li, J.-X. Wu, K.Y. Lee.Two-dimensional elasticity solution of elastic strips and beams made of functionally graded materials under tension and bending:Acta Mech.:226: 2235-2253, 2015 [66]X.-F. Li, G.-J. Tang, Z.-B. Shen, K.Y. Lee.Stress intensify factors for an external circular crack at the interface of a bi-material in shear-compression:Int. J. Solids Struct.:64-65: 221-231, 2015 [67]A.-Y. Tang, X.-F. Li, J.-X. Wu, K.Y. Lee.Flapwise bending vibration of rotating tapered Rayleigh cantilever beams:J. Constr. Steel Res.:112, 1-9, 2015 [68]X.-F. Li, K.Y. Lee.Effect of horizontal reaction force on the deflection of short simply-supported beams under transverse loadings:Int. J. Mech. Sci.:99, 121-129, 2015 [69]X.-F. Li, G.-J. Tang, Z.-B. Shen, K.Y. Lee.Axisymmetric problems of a penny-shaped crack at the interface of a bi-material under shear and compression:Int. J. Solids Struct.:69-70: 403-414, 2015 [70]X.-F. Li, K. Y. Lee.Effect of heat conduction of penny-shaped crack interior on thermal stress intensity factors:Int. J. Heat Mass Transfer.:91, 127-134, 2015 [71]X.-L. Peng, X.-F. Li, G.-J. Tang, Z.-B. Shen.Effect of scale parameter on the deflection of a nonlocal beam and application to energy release rate of a crack:ZAMM:95: 1428-1438, [72]Z-C Jiang, G-J Tang, X-F Li.Effect of initial T-stress on stress intensity factor for a crack in a thin pre-stressed layer:Eng. Fract. Mech.:150, 19-27, 2015 [73]B.-Q. Tang, G.-J. Tang, X.-F. Li.Effect of T-stress on branch angle of moving cracks:Mech. Res. Comm.:56, 26-30, 2014 [74]X.-F. Li, H. Zhang, K. Y. Lee.Dependence of Young's modulus of nanowires on surface effect:Int. J. Mech. Sci.:81, 120-125, 2014 [75]T.-Y. Fan, X.-F. Li.The stress field and energy of screw dislocation in smectic A liquid crystals and the mistakes of the classical solution:Chin. Phys. B:23: 046102, 2014 [76]A.-Y. Tang, J.-X. Wu, X.-F. Li, K.Y. Lee.Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams:Int. J. Mech. Sci.:89, 1-11, 2014 [77]Wu JX, Li XF, Cao WD.Flexural waves in multi-walled carbon nanotubes using gradient elasticity beam theory:Comput. Mater. Sci.:67: 188-195, 2013 [78]Li XF, Tang AY, Xi LY.Vibration of a Rayleigh cantilever beam with axial force and tip mass:J. Constr. Steel Res.:80: 15-22, 2013 [79]Huang Y, Luo QZ, Li XF.Transverse waves propagating in carbon nanotubes via a higher-order nonlocal beam model:Compos. Struct.:95: 328-336, 2013 [80]Li XF, Kang YA, Wu JX.Exact frequency equations of free vibration of exponentially functionally graded beams:Appl. Acoust.:74: 413-420, 2013 [81]H. Rokni, R.J. Seethaler, A.S. Milani, S. Hosseini-Hashemi, X.F. Li..Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation:Sens. Actuat. A: Physical:190: 32–43, 2013 [82]H. Wang, X.F. Li, G.J. Tang, Z.B. Shen.Effect of surface stress on stress intensity factors of a nanoscale crack via double cantilever beam model:J. Nanosci. Nanotech.:13: 477-482, 2013 [83]L.Y. Xi, X.F. Li, G.J. Tang.Free vibration of standing and hanging gravity-loaded Rayleigh cantilevers:Int. J. Mech. Sci.:66, 233-238, 2013 [84]Li XF.Free vibration of axially-loaded shear beams carrying elastically restrained lumped tip masses via asymptotic Timoshenko beam theory:ASCE J. Eng. Mech.:139: 418-428, 2013 [85]Kang YA, Zhang H, Li XF.Natural frequencies of a shear beam standing on an elastic base and carrying a lumped mass:Adv. Struct. Eng.:16: 549-558, 2013 [86]Y. Huang, J. X. Wu, X. F. Li, L. E. Yang.Higher-order theory for bending and vibration of beams with circular cross-section:J. Eng. Math.:80: 91-104, 2013 [87]H. Zhang, X.F. Li, G.J Tang, Z.B. Shen.Stress intensity factors of double cantilever nanobeams via gradient elasticity theory:Eng. Fract. Mech.:105, 58-64, 2013 [88]Li X.F..Elastohydrodynamic problems in quasicrystal elasticity theory and wave propagation:Philos. Mag.:93: 1500-1519, 2013 [89]X.F. Li, H. Zhang.Buckling load and critical length of nanowires on an elastic substrate:Com. R. Mec.:341: 636-645, 2013 [90]H. Zhang, Y.A. Kang, X.F. Li.Stability and vibration analysis of axially-loaded shear beam-columns carrying elastically restrained mass:Appl. Math. Mod.:37: 8237-8250, 2013 [91]X.F. Li, L.Y. Xie, T.Y. Fan.Elasticity and dislocations in quasicrystals with 18-fold symmetry:Phys. Lett. A:377: 2810-2814, [92]X.F. Li, G.J. Tang, B.Q. Tang.Stress field around a strike-slip fault in orthotropic elastic layers via hypersingular integral equation:Comput. Math. Appl.:66: 2317-2326, 2013 [93]Shen ZB, Li XF, Sheng LP, Tang GJ.Transverse vibration of nanotube-based micro-mass sensor via nonlocal Timoshenko beam theory:Comput. Mater. Sci.:53, 340–346, 2012 [94]Shen J. Wu JX, Song J, Li XF, Lee KY.Flexural waves of carbon nanotubes based on generalized gradient elasticity:Phys. Status Solidi B:249: 50-57, 2012 [95]Wu JX, Li XF, Tang GJ.Bending wave propagation of carbon nanotubes in a bi-parameter elastic matrix:Phys. B:407: 684-688, 2012 [96]Li XF, Lee KY, Tang GJ.Kink angle and fracture load for an angled crack subjected to far-field compressive loading:Eng. Fract. Mech.:82: 172-184, 2012 [97]Shen ZB, Tang GJ, Zhang L, Li XF.Vibration of double-walled carbon nanotube based nanomechanical sensor with initial axial stress:Comput. Mater. Sci.:58, 51–58, 2012 [98]Shen ZB, Sheng LP, Li XF, Tang GJ.Nonlocal Timoshenko beam theory for vibration of carbon nanotube-based biosensor:Phys. E:44: 1169-1176, 2012 [99]Li XF, Tang GJ, Shen ZB, Lee KY.Vibration of nonclassical shear beams with Winkler-Pasternak-type restraint:Acta Mech.:223: 953-966, 2012 [100]Y.J. Lei, J.B. Duan, D.K. Li, X.F. Li.Crack problems in a viscoelastic medium using enriched finite element method:Int. J. Mech. Sci.:58: 34-46, 2012 [101]Peng XL, Li XF.Elastic analysis of rotating functionally graded polar orthotropic disks:Int. J. Mech. Sci.:60: 84-91, 2012 [102]Peng XL, Li XF.Effects of gradient on stress distribution in rotating functionally graded solid disks:J. Mech. Sci. Tech.:26: 1483-1492, 2012 [103]J.B. Duan, X.F. Li, Y.J. Lei..A note on stress intensity factors for a crack emanating from a sharp V-notch:Eng. Fract. Mech.:90, 180-187, 2012 [104]Huang Y, Li XF.An analytic approach for exactly determining critical loads of buckling of non-uniform columns:Int. J. Struct. Stab. Dyn.:12: 1250027, 2012 [105]Li XF.A general solution of elasto-hydrodynamics of two-dimensional quasicrystals:Phil. Mag. Lett.:91: 313-320, 2011 [106]Huang Y, Li XF.Buckling analysis of non-uniform and axially graded beams with varying flexural rigidity:ASCE J. Eng. Mech.:137: 73-81, 2011 [107]Yan SX, Zhang ZP, Wei DJ, Li XF.Bending vibration of rotating tapered cantilevers by the integral equation method:AIAA J:49: 872-876, 2011 [108]Li XF, Xi LY, Huang Y.Stability analysis of composite columns and parameter optimization against buckling:Compos. Part B: Eng.:42: 1337-1345, 2011 [109]Li XF, Yu ZW, Zhang H.Free vibration of shear beams with finite rotational inertia:J. Constr. Steel Res.:67: 1677-1683, 2011 [110]Huang L, Li XF, Zhao YL, Duan XY.Approximate solution of fractional integro-differential equations by Taylor expansion method:Comp. Math. Appl.:62: 1127-1134, 2011 [111]Huang Y, Li XF.Interfacial waves in dissimilar piezoelectric cubic crystals with an imperfect bonding:IEEE Trans Ultra. Ferro, Freq. Contr.:58: 1261-1265, 2011 [112]Li XF, Wang BL, Tang GJ, Lee KY.Size effect in transverse mechanical behavior of one-dimensional nanostructures:Phys. E.:44: 207-214, 2011 [113]Shen ZB, Deng B, Li XF, Tang GJ.Vibration of double-walled carbon nanotube-based mass sensor via nonlocal Timoshenko beam theory:ASME J. Nanotech. Eng. Med.:2: 031003, 2011 [114]Li XF, Peng XL, Lee KY.Static response of functionally graded radially-polarized piezoelectric spherical shells as sensors and actuators:Smart Mater. Struct.:19: 035010, 2010 [115]Huang Y, Li XF.A new approach for free vibration of axially functionally graded beams with non-uniform cross-section:J. Sound Vib.:329: 2291-2303, [116]Li XF, Tang BQ, Peng XL, Huang Y.Influence of elastic T-stress on the growth direction of two parallel cracks:Struct. Eng. Mech.:34: 377-390, 2010 [117]Zhong XC, Li XF.Diffraction of SH-waves by an interfacial crack between a magnetoelectroelastic solid and an elastic material:Mech. Adv. Mater. Struct.:17: 134-144, 2010 [118]Huang Y, Li XF.Bending and vibration of circular cylindrical beams with arbitrary radial nonhomogeneity:Int. J. Mech. Sci.:52: 595-601, 2010 [119]Peng XL, Li XF.Thermal stress in rotating functionally graded hollow circular disks:Compos. Struct.:92: 1896-1904, 2010 [120]Peng XL, Li XF.Transient response of temperature and thermal stresses in a functionally graded hollow cylinder:J. Thermal Stresses:33: 485-500, 2010

学术兼职

[1] 湖南省力学学会常务理事 [2] 中国材料学会疲劳分会理事 [3] Heliyon (Engineering Section) 副编 [4] Eng Solid Mech编委 [5] Int J Mater Eng Tech编委 [6] JP J Solids Struct编委 [7] Int J Math Phys编委

推荐链接
down
wechat
bug