近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1]Wei-Li Ma, Xian-Fang Li, Kang Yong Lee.Third-order shear deformation beam model for flexural waves and free vibration of pipes:J. Acoust. Soc. Am. 147, 1634-1647, 2020.
[2]Wei-Li Ma, Zi-Cheng Jiang, Kang-Yong Lee, Xian-Fang Li.A refined beam theory for bending and vibration of functionally graded tube-beams:Compos. Struct. 236, 111878, 2020.
[3]Y. Huang, X.-F. Li.Exact and approximate solutions of convective-radiative fins with temperature-dependent thermal conductivity using integral equation method:Int. J. Heat Mass Transfer. 150, 119303, 2020.
[4]S.-X. Zhou, X.-F. Li.Smooth interface crack of two bonded dissimilar orthotropic elastic media under shear loading:Eur. J. Mech. / A Solids 81, 103935, 2020
[5]S. Xiang, K. Y. Lee, X.-F. Li.Elasticity solution of functionally graded beams with consideration of the flexoelectric effect:J. Phys. D: Appl. Phys. 53(10), 105301, 2020.
[6]Y. Yang, Z.-L. Hu, X.-F. Li.Nanoscale mode-III interface crack in a bimaterial with surface elasticity:Mech. Mater. 140, 103246, 2020.
[7]Y Peng, X-Y Zhang, X-F Li.Transient hygrothermoelastic response in a porous cylinder subjected to ramp-type heat-moisture loading:J Thermal Stresses, 42, 1499-1514, 2019.
[8]B.J. Xiao, X.F. Li.Exact solution of buckling load of axially exponentially graded columns and its approximation:Mech. Res. Comm. 101, 103414, 2019
[9]X.-Y. Zhang, Z.-T. Chen, X.-F. Li.Generalized fractional heat conduction in one-dimensional functionally graded materials:J. Thermophys. Heat Transfer 33, 946-956, 2019
[10]X-F Li, K Y Lee.Nonclassical axisymmetric bending of circular Mindlin plates with radial force:Meccanica 54, 1623-1645, 2019
[11]Xue-Yang Zhang, Xian-Fang Li.Transient response of a functionally graded thermoelastic plate with a crack via fractional heat conduction:Theo. Appl. Fract. Mech. 104, 102318, 2019
[12]Ying Yang, Xian-Fang Li.Bending and free vibration of a circular magnetoelectroelastic plate with surface effects:Int. J. Mech. Sci. 157-158, 858-871, 2019
[13]Y.-B. Zhou, X.-F. Li.Fracture analysis of an infinite 1D hexagonal piezoelectric quasicrystal plate with a penny-shaped dielectric crack.Eur. J. Mech. A/Solids 76, 224-234, 2019
[14]X.-F. Li.Effect of surface elasticity on stress intensity factors near the mode-III crack tips:J. Mech. Mater. Struct. 14(1), 43-60, 2019
[15]Xue-Yang Zhang, Zeng-Tao Chen, Xian-Fang Li.Non-Fourier fractional heat conduction in two bonded dissimilar materials with a penny-shaped interface crack:Int. J. Therm. Sci. 140, 319-328, 2019
[16]Q.-X. Xiao, X.-F. Li.Flutter and vibration of elastically restrained nanowires under a nonconservative force:ZAMM, 99(3), e201700325, 2019
[17]X.-Y. Zhang, Y-J. Xie, X.-F. Li.Transient thermoelastic response in a cracked strip of functionally graded materials via generalized fractional heat conduction:Appl. Math. Modell. 70, 328-349, 2019
[18]S.-X. Zhou, X.-F. Li.Interfacial debonding of an orthotropic half-plane bonded to a rigid foundation:Int. J. Solids Struct. 161, 1-10, 2019
[19]D.-L. Sun, X.-F. Li.Initial value method for free vibration analysis of axially-loaded functionally graded non-uniform Timoshenko beams:Mech. Based Des. Struct. Mach. 47, 102-120, 2019
[20]X.-Y. Zhang, Y. Peng, Y-J. Xie, X.-F. Li.Hygrothermoelastic response of a hollow cylinder based on a coupled time-fractional heat and moisture transfer model:ZAMP 70, 2, 2019
[21]Y.-B. Zhou, X.-F. Li.A Yoffe-type moving crack in one-dimensional hexagonal piezoelectric quasicrystals:Appl. Math. Modell. 65, 148-163, 2019
[22]X.-Y. Zhang, Z.-T. Chen, X.-F. Li.Thermal shock fracture of an elastic half-space with a subsurface penny-shaped crack via fractional thermoelasticity:Acta Mech. 229, 4875-4893, 2018
[23]J. Zhang, X.-F. Li.Bending of piezoelectric beams with the flexoelectric effect under applied load at any position:Mod. Phys. Lett. B. 32(30), 1850372, 2018
[24]S. Xiang, X.-F. Li.Elasticity solution of the bending of beams with the flexoelectric and piezoelectric effects:Smart Mater. Struct. 27, 105023, 2018
[25]Q.X. Xiao, X.-F. Li.Flutter and divergence instability of rectangular plates under nonconservative forces considering surface elasticity:Int. J. Mech. Sci. 149, 254-261, 2018
[26]J. Zou, X. F. Li.Effect of the Casimir force on buckling of a double-nanowire system with surface effects:Int. J. Struct. Stab. Dyn. 18(10), 1850118, 2018
[27]X.-Y. Zhang, Y. Peng, X.-F. Li.Time-fractional hygrothermoelastic problem for a sphere subjected to heat and moisture flux:J. Heat Transfer 140, 122002, 2018
[28]Z.-L. Hu, K. Y. Lee, X.-F. Li.Crack in an elastic thin-film with surface effect:Int. J. Eng. Sci.:123, 158-173, 2018
[29]Y. Peng, X.-Y. Zhang, Y.-J. Xie, X.-F. Li.Transient hygrothermoelastic response in a cylinder considering non-Fourier hyperbolic heat-moisture coupling:Int. J. Heat Mass Transfer.:126, 1094-1103, 2018
[30]Y. Yang, K.Y. Lee, X.-F. Li.Surface effects on delamination of a thin film bonded to an elastic substrate:Int. J. Fract.:210: 81-94, 2018
[31]Y. Yang, J. Zou, K. Y. Lee, X.-F. Li.Bending of circular nanoplates with consideration of surface effects:Meccanica:53: 985-999, 2018
[32]Z.L. Hu, X. F. Li.A rigid line inclusion in an elastic film with surface elasticity:ZAMP:69, 92, 2018
[33]Y.-B. Zhou, X.-F. Li.Exact solution of two collinear cracks normal to the boundaries of a 1D layered hexagonal piezoelectric quasicrystal:Phil. Mag.:98: 1780-1798, 2018
[34]X.-F. Li, S.-N. Jiang, K. Y. Lee.Surface effects on dynamic stability of microcantilevers on an elastic foundation under a subtangential follower force:Int. J. Mech. Mater. Des.:14, 91-104, 2018
[35]C.N. Xie, X.F. Li.Optimal location of ring support for heavy Mindlin plates under axisymmetric loading:J. Mech. Eng. Sci.:232: 1270-1279, 2018
[36]W.S. Li, J. Zou, K.Y. Lee, X.F. Li.Asymmetric trapped modes in a tube waveguide with a bulge:Acta Mech.:229: 1123-1136, 2018
[37]W. Shi, J. Zou, K.Y. Lee, X. F. Li.Size-dependent resonance frequencies of cantilevered and bridged nanosensors:Mod. Phys. Lett. B.:32: 1850095, 2018
[38]Y.-B. Zhou, X.-F. Li.Two collinear mode-III cracks in one-dimensional hexagonal piezoelectric quasicrystal strip:Eng. Fract. Mech.:189, 133-147, 2018
[39]J. Zou, X.F. Li.Effects of the Casimir force and surface elasticity on the natural frequencies of cantilever AFM probes:Acta Acust. u. Acust.:104, 87-93, 2018
[40]X.-F. Li, K.Y. Lee.Effects of Engesser's and Haringx's hypotheses on buckling of Timoshenko and higher-order shear-deformable columns:ASCE J. Eng. Mech.:144: 04017150, 2018
[41]X.-Y. Zhang, X.-F. Li.Thermal shock fracture of a cracked thermoelastic plate based on time-fractional heat conduction:Eng. Fract. Mech.:171, 22 - 34, 2017
[42]D.Q. Chen, D.L. Sun, X.F. Li.Surface effects on resonance frequencies of axially functionally graded Timoshenko nanocantilevers with attached nanoparticle:Compos. Struct.:173, 116-126, 2017
[43]X. Yuan, S. Zhu, X.F. Li*, C. Chen, K.C. Zhou, D. Zhang.Mechanical performance of piezoelectric fiber composites and electroelastic field concentration near the electrode edges:Mater. Des.:128, 71-79, 2017
[44]X.-F. Li, Z.-B. Shen, K. Y. Lee.Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia:ZAMM:97: 602-616, 2017
[45]X.-F. Li, G.-J. Tang, Z.-B. Shen, K. Y. Lee.Size-dependent resonance frequencies of longitudinal vibration of a nonlocal Love nanobar with a tip nanoparticle:Math. Mech. Solids:22: 1529-1542, 2017
[46]J-X Wu, X-F Li, A-Y Tang, K Y Lee.Free and forced transverse vibration of nanowires with surface effects:J. Vib. Contr.:23: 2064-2077, 2017
[47]X.-Y. Zhang, X.-F. Li.Transient thermal stress intensity factors for a circumferential crack in a hollow cylinder based on generalized fractional heat conduction:Int. J. Therm. Sci.:121, 336-347, 2017
[48]X.-Y. Zhang, X.-F. Li.Transient response of a hygrothermoelastic cylinder based on fractional diffusion-wave theory:J. Thermal Stresses:40: 1575-1594, 2017
[49]Q.-X. Xiao, J. Zou, K. Y. Lee, X.-F. Li.Surface effects on flutter instability of nanorod under generalized follower force:Struct. Eng. Mech.:64: 723-730, 2017
[50]W. Shi, X.-F. Li, C.Y. Wang.Bending of a rectangular plate with rotationally restrained edges under a concentrated force:Appl. Math. Comp.:286, 265-278, 2016
[51]D.-L. Sun, X.-F. Li, C.Y. Wang.Buckling of standing tapered Timoshenko columns with varying flexural rigidity under combined loadings:Int. J. Struct. Stab. Dyn.:16: 1550017, 2016
[52]W.-S. Li, J. Zou, K. Y. Lee, X.-F. Li.Trapped modes in an infinite or semi-infinite tube with a local enlargement:Ultrasonics:71, 59–68, 2016
[53]D.-K. Li, X.-F. Li.Large deflection and rotation of Timoshenko beams with frictional end supports under three-point bending:C. R. Mec.:344: 556-568, 2016
[54]X.-F. Li, J. Zou, S.-N. Jiang, K. Y. Lee.Resonant frequency and flutter instability of a nanocantilever with the surface effects:Compos. Struct.:153: 645-653, 2016
[55]X.-F. Li, K. Y. Lee.Fracture of a thin power-law nonlinear material with a crack using the DCB model:Int. J. Fract.:201: 119-125, 2016
[56]W. Shi, Z.-B. Shen, X.-L. Peng, X.-F. Li.Frequency equation and resonant frequencies of free-free Timoshenko beams with unequal end masses:Int. J. Mech. Sci.:115-116:406-415,2016
[57]X.F. Li, T.Y. Fan.Dislocations in the second kind two-dimensional quasicrystals of soft matter:Phys. B.:502, 175-180, 2016
[58]Y. Huang, X.-F. Li.Effect of radial reaction force on the bending of circular plates resting on a ring support:Int. J. Mech. Sci.:119, 197-207, 2016
[59]X.-F. Li, G.-J. Tang, Z.-B. Shen, K.Y. Lee.Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory:Ultrasonics:55, 75-84, 2015
[60]W. Shi, X.-F. Li, K.Y. Lee.Transverse vibration of free-free beams carrying two unequal end masses:Int. J. Mech. Sci.:90, 251-257, 2015
[61]S. Zhu, D. Zhang, K.-C. Zhou, X.-F. Li.Effects of nonhomogeneity on singular electroelastic field near electrodes for a functionally graded piezoelectric material:Eur. J. Mech. - A/Solids:51, 21-28, 2015
[62]P. Chu, X.-F. Li, Z.-G. Wang, K.Y. Lee.Double cantilever beam model for functionally graded materials based on two-dimensional theory of elasticity:Eng. Fract. Mech.:135, 232-244, 2015
[63]X.-F. Li, G-J Tang, Z-B Shen, K Y Lee.Interface crack embedded in a bi-material plane under shear and compression:Mech. Mater.:85, 80-93, 2015
[64]J.X. Wu, X.F. Li.Effect of an elastic substrate on buckling of free-standing nanocolumns:ZAMM:95: 396-405, 2015
[65]P. Chu, X.-F. Li, J.-X. Wu, K.Y. Lee.Two-dimensional elasticity solution of elastic strips and beams made of functionally graded materials under tension and bending:Acta Mech.:226: 2235-2253, 2015
[66]X.-F. Li, G.-J. Tang, Z.-B. Shen, K.Y. Lee.Stress intensify factors for an external circular crack at the interface of a bi-material in shear-compression:Int. J. Solids Struct.:64-65: 221-231, 2015
[67]A.-Y. Tang, X.-F. Li, J.-X. Wu, K.Y. Lee.Flapwise bending vibration of rotating tapered Rayleigh cantilever beams:J. Constr. Steel Res.:112, 1-9, 2015
[68]X.-F. Li, K.Y. Lee.Effect of horizontal reaction force on the deflection of short simply-supported beams under transverse loadings:Int. J. Mech. Sci.:99, 121-129, 2015
[69]X.-F. Li, G.-J. Tang, Z.-B. Shen, K.Y. Lee.Axisymmetric problems of a penny-shaped crack at the interface of a bi-material under shear and compression:Int. J. Solids Struct.:69-70: 403-414, 2015
[70]X.-F. Li, K. Y. Lee.Effect of heat conduction of penny-shaped crack interior on thermal stress intensity factors:Int. J. Heat Mass Transfer.:91, 127-134, 2015
[71]X.-L. Peng, X.-F. Li, G.-J. Tang, Z.-B. Shen.Effect of scale parameter on the deflection of a nonlocal beam and application to energy release rate of a crack:ZAMM:95: 1428-1438,
[72]Z-C Jiang, G-J Tang, X-F Li.Effect of initial T-stress on stress intensity factor for a crack in a thin pre-stressed layer:Eng. Fract. Mech.:150, 19-27, 2015
[73]B.-Q. Tang, G.-J. Tang, X.-F. Li.Effect of T-stress on branch angle of moving cracks:Mech. Res. Comm.:56, 26-30, 2014
[74]X.-F. Li, H. Zhang, K. Y. Lee.Dependence of Young's modulus of nanowires on surface effect:Int. J. Mech. Sci.:81, 120-125, 2014
[75]T.-Y. Fan, X.-F. Li.The stress field and energy of screw dislocation in smectic A liquid crystals and the mistakes of the classical solution:Chin. Phys. B:23: 046102, 2014
[76]A.-Y. Tang, J.-X. Wu, X.-F. Li, K.Y. Lee.Exact frequency equations of free vibration of exponentially non-uniform functionally graded Timoshenko beams:Int. J. Mech. Sci.:89, 1-11, 2014
[77]Wu JX, Li XF, Cao WD.Flexural waves in multi-walled carbon nanotubes using gradient elasticity beam theory:Comput. Mater. Sci.:67: 188-195, 2013
[78]Li XF, Tang AY, Xi LY.Vibration of a Rayleigh cantilever beam with axial force and tip mass:J. Constr. Steel Res.:80: 15-22, 2013
[79]Huang Y, Luo QZ, Li XF.Transverse waves propagating in carbon nanotubes via a higher-order nonlocal beam model:Compos. Struct.:95: 328-336, 2013
[80]Li XF, Kang YA, Wu JX.Exact frequency equations of free vibration of exponentially functionally graded beams:Appl. Acoust.:74: 413-420, 2013
[81]H. Rokni, R.J. Seethaler, A.S. Milani, S. Hosseini-Hashemi, X.F. Li..Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation:Sens. Actuat. A: Physical:190: 32–43, 2013
[82]H. Wang, X.F. Li, G.J. Tang, Z.B. Shen.Effect of surface stress on stress intensity factors of a nanoscale crack via double cantilever beam model:J. Nanosci. Nanotech.:13: 477-482, 2013
[83]L.Y. Xi, X.F. Li, G.J. Tang.Free vibration of standing and hanging gravity-loaded Rayleigh cantilevers:Int. J. Mech. Sci.:66, 233-238, 2013
[84]Li XF.Free vibration of axially-loaded shear beams carrying elastically restrained lumped tip masses via asymptotic Timoshenko beam theory:ASCE J. Eng. Mech.:139: 418-428, 2013
[85]Kang YA, Zhang H, Li XF.Natural frequencies of a shear beam standing on an elastic base and carrying a lumped mass:Adv. Struct. Eng.:16: 549-558, 2013
[86]Y. Huang, J. X. Wu, X. F. Li, L. E. Yang.Higher-order theory for bending and vibration of beams with circular cross-section:J. Eng. Math.:80: 91-104, 2013
[87]H. Zhang, X.F. Li, G.J Tang, Z.B. Shen.Stress intensity factors of double cantilever nanobeams via gradient elasticity theory:Eng. Fract. Mech.:105, 58-64, 2013
[88]Li X.F..Elastohydrodynamic problems in quasicrystal elasticity theory and wave propagation:Philos. Mag.:93: 1500-1519, 2013
[89]X.F. Li, H. Zhang.Buckling load and critical length of nanowires on an elastic substrate:Com. R. Mec.:341: 636-645, 2013
[90]H. Zhang, Y.A. Kang, X.F. Li.Stability and vibration analysis of axially-loaded shear beam-columns carrying elastically restrained mass:Appl. Math. Mod.:37: 8237-8250, 2013
[91]X.F. Li, L.Y. Xie, T.Y. Fan.Elasticity and dislocations in quasicrystals with 18-fold symmetry:Phys. Lett. A:377: 2810-2814,
[92]X.F. Li, G.J. Tang, B.Q. Tang.Stress field around a strike-slip fault in orthotropic elastic layers via hypersingular integral equation:Comput. Math. Appl.:66: 2317-2326, 2013
[93]Shen ZB, Li XF, Sheng LP, Tang GJ.Transverse vibration of nanotube-based micro-mass sensor via nonlocal Timoshenko beam theory:Comput. Mater. Sci.:53, 340–346, 2012
[94]Shen J. Wu JX, Song J, Li XF, Lee KY.Flexural waves of carbon nanotubes based on generalized gradient elasticity:Phys. Status Solidi B:249: 50-57, 2012
[95]Wu JX, Li XF, Tang GJ.Bending wave propagation of carbon nanotubes in a bi-parameter elastic matrix:Phys. B:407: 684-688, 2012
[96]Li XF, Lee KY, Tang GJ.Kink angle and fracture load for an angled crack subjected to far-field compressive loading:Eng. Fract. Mech.:82: 172-184, 2012
[97]Shen ZB, Tang GJ, Zhang L, Li XF.Vibration of double-walled carbon nanotube based nanomechanical sensor with initial axial stress:Comput. Mater. Sci.:58, 51–58, 2012
[98]Shen ZB, Sheng LP, Li XF, Tang GJ.Nonlocal Timoshenko beam theory for vibration of carbon nanotube-based biosensor:Phys. E:44: 1169-1176, 2012
[99]Li XF, Tang GJ, Shen ZB, Lee KY.Vibration of nonclassical shear beams with Winkler-Pasternak-type restraint:Acta Mech.:223: 953-966, 2012
[100]Y.J. Lei, J.B. Duan, D.K. Li, X.F. Li.Crack problems in a viscoelastic medium using enriched finite element method:Int. J. Mech. Sci.:58: 34-46, 2012
[101]Peng XL, Li XF.Elastic analysis of rotating functionally graded polar orthotropic disks:Int. J. Mech. Sci.:60: 84-91, 2012
[102]Peng XL, Li XF.Effects of gradient on stress distribution in rotating functionally graded solid disks:J. Mech. Sci. Tech.:26: 1483-1492, 2012
[103]J.B. Duan, X.F. Li, Y.J. Lei..A note on stress intensity factors for a crack emanating from a sharp V-notch:Eng. Fract. Mech.:90, 180-187, 2012
[104]Huang Y, Li XF.An analytic approach for exactly determining critical loads of buckling of non-uniform columns:Int. J. Struct. Stab. Dyn.:12: 1250027, 2012
[105]Li XF.A general solution of elasto-hydrodynamics of two-dimensional quasicrystals:Phil. Mag. Lett.:91: 313-320, 2011
[106]Huang Y, Li XF.Buckling analysis of non-uniform and axially graded beams with varying flexural rigidity:ASCE J. Eng. Mech.:137: 73-81, 2011
[107]Yan SX, Zhang ZP, Wei DJ, Li XF.Bending vibration of rotating tapered cantilevers by the integral equation method:AIAA J:49: 872-876, 2011
[108]Li XF, Xi LY, Huang Y.Stability analysis of composite columns and parameter optimization against buckling:Compos. Part B: Eng.:42: 1337-1345, 2011
[109]Li XF, Yu ZW, Zhang H.Free vibration of shear beams with finite rotational inertia:J. Constr. Steel Res.:67: 1677-1683, 2011
[110]Huang L, Li XF, Zhao YL, Duan XY.Approximate solution of fractional integro-differential equations by Taylor expansion method:Comp. Math. Appl.:62: 1127-1134, 2011
[111]Huang Y, Li XF.Interfacial waves in dissimilar piezoelectric cubic crystals with an imperfect bonding:IEEE Trans Ultra. Ferro, Freq. Contr.:58: 1261-1265, 2011
[112]Li XF, Wang BL, Tang GJ, Lee KY.Size effect in transverse mechanical behavior of one-dimensional nanostructures:Phys. E.:44: 207-214, 2011
[113]Shen ZB, Deng B, Li XF, Tang GJ.Vibration of double-walled carbon nanotube-based mass sensor via nonlocal Timoshenko beam theory:ASME J. Nanotech. Eng. Med.:2: 031003, 2011
[114]Li XF, Peng XL, Lee KY.Static response of functionally graded radially-polarized piezoelectric spherical shells as sensors and actuators:Smart Mater. Struct.:19: 035010, 2010
[115]Huang Y, Li XF.A new approach for free vibration of axially functionally graded beams with non-uniform cross-section:J. Sound Vib.:329: 2291-2303,
[116]Li XF, Tang BQ, Peng XL, Huang Y.Influence of elastic T-stress on the growth direction of two parallel cracks:Struct. Eng. Mech.:34: 377-390, 2010
[117]Zhong XC, Li XF.Diffraction of SH-waves by an interfacial crack between a magnetoelectroelastic solid and an elastic material:Mech. Adv. Mater. Struct.:17: 134-144, 2010
[118]Huang Y, Li XF.Bending and vibration of circular cylindrical beams with arbitrary radial nonhomogeneity:Int. J. Mech. Sci.:52: 595-601, 2010
[119]Peng XL, Li XF.Thermal stress in rotating functionally graded hollow circular disks:Compos. Struct.:92: 1896-1904, 2010
[120]Peng XL, Li XF.Transient response of temperature and thermal stresses in a functionally graded hollow cylinder:J. Thermal Stresses:33: 485-500, 2010