当前位置: X-MOL首页全球导师 国内导师 › 胡庆培

个人简介

2007年毕业于新加坡国立大学并获博士学位,2008年加入数学院系统所统计科学研究室工作至今。主要研究方向为工业统计,侧重于系统可靠性与软件可靠性理论方法,同时面向我国民用航天质量与可靠性实际需求。主要研究工作发表于工业统计及质量可靠性领域的重要期刊,包括IEEETransactionsonReliability,IIETransactions,JournalofQualityTechnology,ReliabilityEngineeringandSystemSafety等。胡庆培博士现任中国现场统计研究会理事,中国现场统计研究会可靠性分会常务理事、中国运筹学会可靠性分会常务理事。

研究领域

统计学 工业统计 可靠性

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Residuallifepredictionforcomplexsystemswithmulti-phasedegradationbyARMA-filteredhiddenMarkovmodel Theperformanceofcertaincriticalcomplexsystems,suchasthepoweroutputofgroundphotovoltaic(PV)modulesorspacecraftsolararrays,exhibitsamulti-phasedegradationpatternduetotheredundantstructure.Thispatternshowsadegradationtrendwithmultiplejumppoints,whicharemixedeffectsoftwofailuremodes:asoftmodeofcontinuoussmoothdegradationandahardmodeofabruptfailure.Bothmodesneedtobemodeledjointlytopredictthesystemresiduallife.Inthispaper,anautoregressivemovingaveragemodel-filteredhiddenMarkovmodelisproposedtofitthemulti-phasedegradationdatawithunknownnumberofjumppoints,togetherwithaniterativealgorithmforparameterestimation.Thecomprehensivealgorithmiscomposedofnon-linearleast-squaremethod,recursiveextendedleast-squaremethod,andexpectation–maximizationalgorithmtohandledifferentpartsofthemodel.TheproposedmethodologyisappliedtoaspecificPVmodulesystemwithsimulatedperformancemeasurementsforitsreliabilityevaluationandresiduallifeprediction.Comprehensivestudieshavebeenconducted,andanalysisresultsshowbetterperformanceovercompetingmodelsandmoreimportantlyallthejumppointsinthesimulateddatahavebeenidentified.Also,thisalgorithmconvergesfastwithsatisfactoryparameterestimatesaccuracy,regardlessofthejumppointnumber. AReliabilityAssessmentApproachforSystemswithHeterogeneousComponentInformation Reliabilityassessmentofcomplexsystemsisanimportantyetdifficulttask.Thedifficultyariseslargelybecauseofheterogeneouscomponent-leveldata,e.g.,lifetimedata,degradationdata,component-levelassessmentresultandpriorinformation.Amethodforreliabilityassessmentisdevelopedinthispaperforsystemsplaguedbydegradationandlifetimedata.Ourframeworkdividescomponentlevelinformationintotwotypes.Thesetwotypesarethencombinedusingasystematicapproach.Thispaperdescribesthemethodalongwithsomeapplicationexampleswhichdemonstratetheapproachcapableofovercomingseveraldifficultiesassociatedwithconventionalreliabilityassessmentapproaches. StrategicAllocationofTestUnitsinanAcceleratedDegradationTestPlan Degradationisoftendenedintermsofthechangeofakeyperformancecharacteristicovertime.Itiscommontoseethattheinitialperformanceofthetestunitsvariesanditisstronglycorrelatedwiththedegradationrate. Reliabilitydemonstrationtestforload-sharingsystemswithexponentialandWeibullcomponents DegradationModeling,Analysis,andApplicationsonLifetimePrediction Degradationsignalsprovidemoreinformationforproductlifestatusthanfailuredata,whenspecificdegradationmechanismcanbeidentified.Modelingandanalysiswiththedegradationsignalishelpfultoextrapolateforproductlifetimeprediction.Inthischapter,comprehensivereviewhasbeenconductedfordifferentkindsofmodelingandanalysisapproaches,togetherwiththecorrespondinglifetimepredictionresults.Furthermore,discussionsoverrelatedissueslikeproductinitialperformancearepresented. AnApproachforReliabilityDemonstrationTestBasedonPower-LawGrowthModel Reliabilitydemonstrationtest(RDT)isacriticalandnecessarystepbeforetheacceptanceofanindustrialsystem.Generally,aRDTfocusesondesigningatestplanthroughwhichonecanjudgewhetherthesystemreliabilityindicesmeetspecificrequirements.TherearemanyestablishedRDTplans,butfewhaveincorporatedthereliabilitygrowthaspectsofthecorrespondingproducts.Inthispaper,weexamineacomprehensivetestplanthatinvolvesinformationconcerningthereliabilitygrowthstage.AnapproachforRDTundertheassumptionofthepower-lawmodelisproposed.Itcombinesdatarelatedtothegrowthstagewiththosepertainingtotheteststageoftheproducttoreducethecostofthetest.Throughsimulationstudiesandnumericalexamples,weillustratethecharacteristicsofthetestplanandsignificantreductionintestcoststhroughourapproach. DesignandRiskEvaluationofReliabilityDemonstrationTestforHierarchicalSystemswithMultilevelInformationAggregation Asreliabilityrequirementsbecomeincreasinglydemandingformanyengineeringsystems,conventionalsystemreliabilitydemonstrationtesting(SRDT)basedonthenumberoffailuresdependsonalargesampleofsystemunits.However,formanysafetycriticalsystems,suchasmissiles,itisprohibitivetoperformsuchtestingwithlargesamples.Toreducethesamplesize,existingSRDTmethodsutilizetestdatafromeithersystemlevelorcomponentlevel.Inthispaper,anaggregation-basedSRDTmethodologyisproposedforhierarchicalsystemsbyutilizingmultilevelreliabilityinformationofcomponents,subsystems,andtheoverallsystem.Analyticalconditionsareidentifiedfortheproposedmethodtoachievelowerconsumerrisk.TheperformancesofdifferentSRDTdesignstrategiesareevaluatedandcomparedaccordingtotheirconsumerrisks.Anumericalcasestudyispresentedtoillustratetheproposedmethodologyanddemonstrateitsvalidityandeffectiveness. Softwarereliabilitygrowthmodelingandanalysiswithdualfaultdetectionandcorrectionprocesses Computersoftwareiswidelyappliedinsafety-criticalsystems.Theever-increasingcomplexityofsoftwaresystemsmakesitextremelydifficulttoensuresoftwarereliability,andthisproblemhasdrawnconsiderableattentionfrombothindustryandacademia.Mostsoftwarereliabilitymodelsarebuiltonacommonassumptionthatthedetectedfaultsareimmediatelycorrected;thus,thefaultdetectionandcorrectionprocessescanberegardedasthesameprocess.Inthisarticle,acomprehensivestudyisconductedtoanalyzethetimedependenciesbetweenthefaultdetectionandcorrectionprocesses.ThemodelparametersareestimatedusingtheMaximumLikelihoodEstimation(MLE)method,whichisbasedonanexplicitlikelihoodfunctioncombiningboththefaultdetectionandcorrectionprocesses.Numericalcasestudiesareconductedundertheproposedmodelingframework.TheobtainedresultsdemonstratethattheproposedMLEmethodcanbeappliedtomoregeneralsituationsandprovidemoreaccurateresults.Furthermore,thepredictivecapabilityoftheMLEmethodiscomparedwiththatoftheLeastSquaresEstimation(LSE)method.ThepredictionresultsindicatethattheproposedMLEmethodperformsbetterthantheLSEmethodwhenthedataarenotlargeinsizeorarecollectedintheearlyphaseofsoftwaretesting. Ageneralmodelingandanalysisframeworkforsoftwarefaultdetectionandcorrectionprocess Softwarereliabilitygrowthmodelingplaysanimportantroleinsoftwarereliabilityevaluation.Toincorporatemoreinformationandprovidemoreaccurateanalysis,modelingsoftwarefaultdetectionandcorrectionprocesseshasattractedwidespreadresearchattentionrecently.Inmodelingsoftwarecorrectionprocesses,theassumptionoffaultcorrectiontimeisrelaxedfromconstantdelaytorandomdelay.However,stochasticdistributionoffaultcorrectiontimebringsmoredifficultiesinmodelingandcorrespondingparameterestimation.Inthispaper,aframeworkofsoftwarereliabilitymodelscontainingbothinformationfromsoftwarefaultdetectionprocessandcorrectionprocessisstudied.Differentfrompreviousextensionsonsoftwarereliabilitygrowthmodeling,theproposedapproachisbasedonMarkovmodelotherthananonhomogeneousPoissonprocessmodel.Also,parameterestimationiscarriedoutwithweightedleast-squareestimationmethod,whichemphasizestheinfluenceoflaterdataontheprediction.Twodatasetsfrompracticalsoftwaredevelopmentprojectsareappliedwiththeproposedframework,whichshowssatisfactoryperformancewiththeresults. Proportionalhazardmodelingforhierarchicalsystemswithmulti-levelinformationaggregation Reliabilitymodelingofhierarchicalsystemsiscrucialfortheirhealthmanagementinmanymission-criticalindustries.Conventionalstatisticalmodelingmethodologiesareconstrainedbythelimitedavailabilityofreliabilitytestdata,especiallywhenthesystem-levelreliabilitytestsofsuchsystemsareexpensiveand/ortime-consuming.Thisarticlepresentsasemi-parametricapproachtomodelingsystem-levelreliabilitybysystematicallyandexplicitlyaggregatinglower-levelinformationofsystemelements;i.e.,componentsand/orsubsystems.AninnovativeBayesianinferenceframeworkisproposedtoimplementinformationaggregationbasedontheknownmulti-levelstructureofhierarchicalsystemsandinteractionrelationshipsamongtheircomposingelements.Numericalcasestudyresultsdemonstratetheeffectivenessoftheproposedmethod. Lowerconfidencelimitforreliabilitybasedongroupeddatausingaquantile-fillingalgorithm Theaimofthispaperistoproposeanapproachtoconstructinglowerconfidencelimitsforareliabilityfunctionandinvestigatetheeffectofasamplingschemeontheperformanceoftheproposedapproach.Thisisaccomplishedbyusingadata-completionalgorithmandcertainMonteCarlomethods.Thedata-completionalgorithmfillsincensoredobservationswithpseudo-completedatawhiletheMonteCarlomethodssimulateobservationsforcomplicatedpivotalquantities.TheBirnbaum–Saundersdistribution,thelognormaldistributionandtheWeibulldistributionareemployedforillustrativepurpose.Theresultsofthreecasesofdata-analysisarepresentedtovalidatetheapplicabilityandeffectivenessoftheproposedmethods.Thefirstcaseisillustratedthroughsimulateddata,andthelasttwocasesareillustratedthroughtworeal-datasets. Studyofanimputationalgorithmfortheanalysisofinterval-censoreddata Inthisarticle,aniterativesingle-pointimputation(SPI)algorithm,calledquantile-fillingalgorithmfortheanalysisofinterval-censoreddata,isstudied.ThisapproachcombinesthesimplicityoftheSPIandtheiterativethoughtsofmultipleimputation.Thevirtualcompletedataareimputedbyconditionalquantilesontheintervals.Thealgorithmconvergenceisbasedontheconvergenceofthemomentestimationfromthevirtualcompletedata.Simulationstudieshavebeencarriedoutandtheresultsareshownforinterval-censoreddatageneratedfromtheWeibulldistribution.FortheWeibulldistribution,completeproceduresofthealgorithmareshowninclosedforms.Furthermore,thealgorithmisapplicabletotheparameterinferencewithotherdistributions.Fromsimulationstudies,ithasbeenfoundthatthealgorithmisfeasibleandstable.Theestimationaccuracyisalsosatisfactory. Robustrecurrentneuralnetworkmodelingforsoftwarefaultdetectionandcorrectionprediction Softwarefaultdetectionandcorrectionprocessesarerelatedalthoughdifferent,andtheyshouldbestudiedtogether.

推荐链接
down
wechat
bug