研究领域
The Laboratory of Electronics from Nanomaterials is focused on improving the performance and functionality of nanomaterial-enabled electronic devices. This includes high-performance devices from low-dimensional materials such as 2D films, carbon nanotubes, and nanowires. Also included is the low-cost realm of printed electronics, which benefits from the incorporation of nanomaterials to enhance electrical transport over large printed features, among other application advantages. The graphic above summarizes the primary drive of our research--to improve performance for all electronic devices, including those with more custom form factors (flexibility, transparency, biocompatibility, etc.).
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
G. S. Tulevski, A. D. Franklin, D. Frank, J. M. Lobez, Q. Cao, H. Park, A. Afzali, S. -J. Han, J. B. Hannon, and W. Haensch, "Toward high-performance digital logic technology with carbon nanotubes," ACS Nano, vol. 8, pp. 8730-8745, 2014.
A. D. Franklin, D. B. Farmer, and W. Haensch, Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors,ACS Nano, vol. 8, pp. 7333-7339, 2014.
B. Kim, A. D. Franklin, C. Nuckolls, W. Haensch, and G. S. Tulevski, Achieving low-voltage thin-film transistors using carbon nanotubes, Appl. Phys. Lett., vol. 105, pp. 063111, 2014.
D. Shahrjerdi, A. D. Franklin, S. Oida, J. A. Ott, G. S. Tulevski, and W. Haensch, High-performance air-stable n-type carbon nanotube transistors with erbium contacts, ACS Nano, vol. 7, pp. 8303-8308, 2013.
A. D. Franklin, The road to carbon nanotube transistors, Nature, vol. 498, pp. 443-444, 2013.
A. D. Franklin, S. O. Koswatta, D. B. Farmer, J. T. Smith, L. Gignac, C. M. Breslin, S. -J. Han, G. S. Tulevski, H. Miyazoe, W. Haensch, and J. Tersoff, Carbon nanotube complementary wrap-gate transistors, Nano Lett., vol. 13, pp. 2490-2495, 2013.
J. Luo, L. Wei, C. -S. Lee, A. D. Franklin, X. Guan, E. Pop, D. A. Antoniadis, and H. -S. P. Wong, A compact model for carbon nanotube field-effect transistors including non-idealities and calibrated with experimental data down to 9 nm gate length, IEEE Trans. Electron Devices, vol. 60, pp. 1834-1843, 2013.
J. T. Smith, A. D. Franklin, D. B. Farmer, and C. Dimitrakopoulos, Reducing contact resistance in graphene devices through contact area patterning, ACS Nano, vol. 7, pp. 3661-3667, 2013.
G. S. Tulevski, A. D. Franklin, and A. Afzali-Ardakani, High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography, ACS Nano, vol. 7, pp. 2971-2976, 2013.
A. D. Franklin, S. Oida, D. B. Farmer, J. T. Smith, S. -J. Han, C. M. Breslin, and L. Gignac, Stacking graphene channels in parallel for enhanced performance with the same footprint, IEEE Electron Device Lett., vol. 34, pp. 556-558, 2013.
A. D. Franklin, N. A. Bojarczuk, and M. Copel, Consistently low subthreshold swing in carbon nanotube transistors using lanthanum oxide, Appl. Phys. Lett., vol. 102, pp. 013108, 2013.
A. D. Franklin, S. Koswatta, D. B. Farmer, G. S. Tulevski, J. T. Smith, H. Miyazoe, and W. Haensch, Scalable and fully self-aligned n-type carbon nanotube transistors with gate-all-around,?? IEEE International Electron Device Meeting (IEDM) Technical Digest, pp. 4.5.1-4.5.4, 2012.
H. Park, A. Afzali, S. -J. Han, G. S. Tulevski, A. D. Franklin, J. Tersoff, J. B. Hannon, and W. Haensch, ??High-density integration of carbon nanotubes via chemical self-assembly,?? Nature Nanotechnol., vol. 7, pp. 787-791, 2012.
Q. Cao, S. -J. Han, G. S. Tulevski, A. D. Franklin, and W. Haensch, ??Evaluation