个人简介
学术论文发表在International Journal of Multiphase Flow, Experimental Thermal and Fluid Science,Chemical Engineering Journal, Journal of Petroleum Science and Engineering, Separation and Purification Technology等杂志上。截止到目前已发表学术论文120余篇(其中第一作者或通讯作者被SCI收录40余篇),出版一部专著《管道式油气水分离技术》,已获得授权国家发明专利13项,美国PCT专利1项,加拿大PCT专利1项。
招生方向
多相流体力学,油气储运理论与技术
工作简历
2015-12~现在, 中国科学院力学研究所, 研究员
2010-12~2015-12,中国科学院力学研究所, 副研究员
2007-07~2010-12,中国科学院力学研究所, 助理研究员
教授课程
非牛顿流与多相流体力学
奖励信息
(1) 中国科学院科技促进发展奖, 二等奖, 部委级, 2014
(2) 中国科学院力学研究所优秀青年人才培育计划, 二等奖, 研究所(学校), 2011
(3) 中海石油(中国)有限公司深圳分公司科技进步中期成果奖, , 其他, 2010
专利成果
(1). 油气水多相分离系统及其应用方法(ZL201510468150.X),排名1/8.
(2). 油水分离装置和油水分离方法(ZL201510114511),排名2/13.
(3). Tubular Oil-water Separator and Spiral Flow Generator (US9901936B2, CA2841826C)(美国,加拿大专利),排名2/6.
(4). 一种含气、水原油的除水系统及应用方法(ZL201310003986.3),排名1/6
(5). 油水两相部分分离在线计量的装置的应用方法(ZL201210111513.0),排名1/3.
(6). 一种含油污水旋流气浮分离装置(ZL201310245879.1),排名3/12..
(7). 一种旋流气浮油水分离装置及气浮发生器(ZL201210122331.3),排名3/8.
(8). 管道式两级导流片型油水分离器及其应用方法(ZL201210191508.5),排名4/10.
(9). 一种管道式导流片型油水分离器的除水装置和油水旋流分离器(ZL201110220538.X),排名2/5.
(10).复合式油水分离系统(ZL201010146416.6),排名4/7.
(11).动态气浮油水分离装置和方法(ZL201010232658.7),排名3/8.
(12).一种完全分离型油、气、水多相流量计(ZL201110024176.7),排名3/5.
(13).一种螺旋片导流式相分离装置,发明专利,ZL201610951435.3,排名1/7
发表著作
(1) 管道式油气水分离技术, 科学出版社, 2017-03, 第 2 作者
主持的项目
承担并完成了国家重大仪器开发专项子任务、院重大项目子课题、863子课题,国家自然科学基金,以及中海油、中航油、中石油等企业委托项目等。目前正在承担中科院先导专项(B类)的课题研究,以及中海油、中航油等企业委托的科研项目。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
2021年
[1]. Investigation on the variation regularity of the characteristic droplet diameters in the swirling flow field. Chemical Engineering Science, 2021, 229, 116153. (SCI/EI, Corresponding Author)
2020年
[1]. Separation mechanism and influential factor study on vane-type-associated petroleum gas separator, Separation and Purification Technology, 2020, 250, 117274 (SCI/EI, Corresponding Author)
[2]. Evaluation of the Behavioral Characteristics in a Gas and Heavy Oil Stratified Flow According to the Herschel-Bulkley Fluid Model. ACS OMEGA, 2020, 5, 17787-17800. (SCI, Corresponding Author)
[3]. Investigation of the Gas–Liquid Two-Phase Flow and Separation Behaviors at Inclined T-Junction Pipelines. ACS Omega, 5, 21443–21450 (SCI, Corresponding Author)
[4]. Investigation on separation performance of vane-type gas-liquid tube separator. Chemical Industry & Chemical Engineering Quarterly, 2020, DOI: 10.2298/ CICEQ190909040N (SCI/EI)
[5]. Coalescence, and Migration Regularity of Bubbles under Gas-Liquid Swirling Flow in Gas-Liquid Cylindrical Cyclone. Industrial & Engineering Chemistry Research, 2020, 59, 2068-2082. (SCI/EI)
[6]. Experimental and numerical study of separation characteristics in gas-liquid cylindrical cyclone. Chemical Engineering Science, 2020, 214, 115362 (SCI/EI, Corresponding Author)
[7]. Investigation into atomization spray blending property in heavy crude oil extraction under laboratory conditions. Journal of Petroleum Science and Engineering, 2020,184, 106494 (SCI/EI, Corresponding Author)
2019年
[1]. Rheological characteristics of unstable heavy crude oil-water dispersed mixtures. Journal of Petroleum Science and Engineering, 2019, 182, 106299 (SCI/EI, Corresponding Author)
[2]. Apparent viscosity characteristics and prediction model of an unstable oil-in-water or water-in-oil dispersion system. Journal of Dispersion Science and Technology, 2019, 40, 1645-1656 (SCI/EI, Corresponding Author)
[3]. Viscoelastic characteristics of heavy crude oil-water two-phase dispersed mixtures. Journal of Petroleum Science and Engineering, 2019, 176:141-149 (SCI/EI, Corresponding Author)
2018年
[1]. Separation characteristics of the gas and liquid phases in a vane-type swirling flow field. International Journal of Multiphase flow, 2018, 107, 131-145 (SCI/EI, Corresponding author)
[2]. A Study of the Swirling Flow Field Induced by Guide Vanes Using Electrical Resistance Tomography and Numerical Simulations, Chemical Engineering Communications, 2018, 205, 1351-1364 (SCI/EI, Corresponding author)
[3]. Breakup and coalescence regularity of non-dilute oil drops in a vane-type swirling flow field. Chemical Engineering Research and Design 2018, 129, 35-54 (SCI/EI, Corresponding author)
[4]. Characteristics of air-water upward intermittent flows with surfactant additive in a pipeline-riser system. Journal of Hydrodynamics 2018, 30, 287-295 (SCI/EI, Corresponding author)
[5]. Gas-liquid flow splitting in T-junction with inclined lateral arm. Journal of Hydrodynamics 2018, 30, 173-176 (SCI/EI)
2017年
[1]. Rheological behavior and viscosity reduction of heavy crude oil and its blends from the Sui-zhong oilfield in China. Journal of Petroleum Science and Engineering. 2017, 156, 563-574 (SCI/EI, Corresponding author)
[2]. Rheological properties of heavy crude oil containing sand from Bo-hai oilfield in China. Appl. Rheol. 27, 2 (2017) 24849-9 (SCI, Corresponding author)
[3]. An experimental study on gas and liquid separation at Y-junction tubes by pressure control. Separation Science and Technology 2017, 52, 1496-1503 (SCI/EI, Corresponding author)
[4]. A study on pure IL VIV of a free spanning pipeline with general boundary conditions. China Ocean Engineering 2017, 31, 114-122 (SCI/EI)
2016年
[1]. Characteristics of water holdup for oil and water mixture flows in horizontal, vertical, and inclined pipes. The Canadian Journal of Chemical Engineering 2016, 94, 2417-2426 (SCI/EI, Corresponding Author)
[2]. Rheological behavior of oil and water emulsions and theirs flow characterization in horizontal pipes. The Canadian Journal of Chemical Engineering 2016, 94, 324-331 (SCI/EI, Corresponding Author)
[3]. A simple model for predicting the two-phase heavy crude oil horizontal flow with low gas fraction. Chemical Engineering Communications 2016, 203, 1131 - 1138 (SCI/EI, Corresponding Author)
[4]. Rheological study of mudflows at Lianyungang in China. International Journal of Sediment Research 2016, 31, 71-78 (SCI/EI, Corresponding Author))
2015年
[1]. A Study on Flow Characteristics of Heavy Crude Oil for Pipeline Transportation. Petroleum Science and Technology 2015, 33, 1425-1433 (SCI/EI, Corresponding Author)
[2]. Measurement of an oil-water flow via the correlation of turbine flow meter, gamma ray densitometry and drift-flux model. Journal of Hydrodynamics 2015, 27, 548- 555 (SCI/EI, Corresponding Author)
[3]. Flow field of continuous phase in a vane-type pipe oi-water separator. Experimental Thermal and Fluid Science 2015, 60, 208-212. (SCI/EI, Corresponding Author)
2014年
[1]. Pressure Drop Models for Gas/Non-Newtonian Power-Law Fluids Flow in Horizontal Pipes. Chemical Engineering & Technology 2014, 37, 717-722 (SCI/EI, Corresponding Author)
[2]. Experimental investigation on yield stress of water-in-heavy crude oil emulsions in order to improve pipeline flow. Journal of Dispersion Science and Technology 2014, 35, 593-598 (SCI/EI, Corresponding Author)
2013年
[1]. A simple correlation for prediction of the liquid slug holdup in gas/non-Newtonian fluids: horizontal to upward inclined flow. Experimental Thermal and Fluid Science 2013, 44, 893-896 (SCI/EI, Corresponding Author)
[2]. Experimental validation of the calculation of phase holdup for an oil-water two-phase vertical flow based on the measurement of pressure drops. Flow Measurement and Instrumentation. 2013, 31, 96-101 (SCI/EI, Corresponding Author)
[3]. Apparent viscosity of oil-water (coarse) emulsion and its rheological characterization during the phase inversion region. Journal of Dispersion Science and Technology 2013, 34, 1148-1160 (SCI/EI, Corresponding Author)
2012年
[1]. Oil-gas-water three-phase upward flow through a vertical pipe: influence of gas injection on the pressure gradient. International Journal of Multiphase Flow 2012, 46, 1-8 (SCI/EI, Corresponding Author)
[2]. Experimental study of a vane-type pipe separator for oil-water separation, Chemical Engineering Research and Design 2012, 90, 1652-1659 (SCI/EI)
[3]. Investigation on Oil-Water Separation in a Liquid-Liquid Cylindrical Cyclone. Journal of Hydrodynamics, 2012, 24,116-123 (SCI/EI)
[4]. Investigations of phase inversion and frictional pressure gradients in upward and downward oil-water flow in vertical pipes. International Journal of Multiphase flow 2012, 36, 930-939 (SCI/EI, Corresponding Author)
2010年
[1]. Investigation on average void fraction for air/non-Newtonian power-law fluids two-phase flow in downward inclined pipes. Experimental Thermal and Fluid Science 2010, 34, 1484-1487 (SCI/EI, Corresponding Author)
2009年
[1]. Influence of gas injection on in-situ oil fraction of an oil-water flow in horizontal pipes. Chemical Engineering and Technology 2009, 32, 1922-1928 (SCI/EI, Corresponding Author)
[2]. Correlation of electromagnetic flow Meter, electrical resistance tomography and mechanistic modelling for a new solution of solid slurry measurement. Journal of Hydrodynamics 2009, 21, 557-563. (SCI/EI, Corresponding Author)
[3]. Study of drag reduction by gas injection for power-law fluid flow in horizontal stratified and slug flow regimes. Chemical Engineering Journal 2009, 147, 235-244. (SCI/EI, Corresponding Author)
[4]. A simple model for predicting the void fraction of gas/non-Newtonian fluid intermittent flows in upward inclined pipes. Chemical Engineering Communications 2009, 196, 746-753. (SCI/EI, Corresponding Author)
2008年
[1]. Experimental investigation on the slip between oil and water in horizontal pipes. Experimental Thermal and Fluid Science 2008, 33, 178-183. (SCI/EI, Corresponding Author)
[2]. Experimental investigation on the holdup distribution of oil-water two-phase flow in horizontal parallel tubes. Chemical Engineering and Technology 2008, 31, 1536-1540. (SCI/EI, Corresponding Author)
2007年
[1]. Studies on two-phase co-current air/non-Newtonian shear-thinning fluid flows in inclined smooth pipes. International Journal of Multiphase flow 2007, 33, 948-969. (SCI/EI, Corresponding Author)
[2]. An experimental study of in-situ phase fraction in jet-pump using electrical resistance tomography technique. Chinese Physics Letters 2007, 24, 512-515. (SCI, Corresponding Author)
[3]. Effects of non-Newtonian liquid properties on pressure drop during horizontal gas-liquid flow. Journal of Central South University of Technology. 2007, 14:112-115 (SCI/EI, Corresponding Author)
[1] 雾化液滴掺混稠油的实验和数值模拟研究.水动力学研究与进展(A辑),34(01):45-52. (通讯作者)
[2]气体/高黏液体两相间歇流动时液相含率的变化特性研究.水动力学研究与进展(A辑),33(06):726-730. (通讯作者)
[3]高含气井下气液混合输送技术研究.水动力学研究与进展(A辑),33(06):759-765. (通讯作者)
[4]旋流分离器在去除航空煤油固相杂质中的应用研究,水动力学研究与进展(A辑),33:73-80(通讯作者)
[5]低温环境下管道法兰连接的应力分析,管道技术与设备,143(1):32-36 (通讯作者)
[6]稠油动力黏度预测研究, 水动力学研究与进展(A辑),32:11-18 (通讯作者)
[7]超稠原油的流变学特性及流动特征研究, 水动力学研究与进展(A辑),31:145-150 (通讯作者)
[8]考虑管土耦合的机坪垂直管道应力分析,力学与实践 38: 624-630(通讯作者)
[9]新型两级气浮旋流设备结构优化与性能研究,石油机械 44: 103-107
[10]柱状气浮分离器处理含油污水实验研究,水动力学研究与进展(A辑),31:334-340
[11]海上油田含聚生产水旋流气浮装置试验研究, 油气田地面工程,35(10):22-25
[12]机坪管网输送低温介质时流固耦合分析,水动力学研究与进展(A辑),31:739-744 (通讯作者)
[13]乳化剂对气液垂直管流中压降影响的研究, 水动力学研究与进展(A辑),31:673-680 (通讯作者)
[14]油水分离技术. 力学进展, 45: 201506(通讯作者)
[15]稠油降黏减阻及其流变学性质. 油气储运。 34:1171-1176 (通讯作者)
[16]立管系统泡状流和段塞流的流动特性研究. 水动力学研究与进展A辑 29: 635-641.(通讯作者)
[17]粗油水乳状液的流变特性. 油气储运 33:531-537(通讯作者)
[18]液固旋流器分离过程数值模拟研究. 油气储运 33: 412-417(通讯作者)
[19]垂直管道内油-水两相环状流的流动特征. 水动力学研究与进展A辑 29: 225-231.(通讯作者)
[20]管道式油水分离系统分离特性研究. 水动力学研究与进展A辑 28: 637-643.(通讯作者)
[21]圆柱结构顺流向第一不稳定区内涡激振动的研究. 水动力学研究与进展 A卷 28: 123-127.
[22]T型管内油水两相流动研究. 油气储运. 31(12):923-926.(通讯作者)
[23]低含水W/O乳化液电脱水实验研究. 水动力学研究与进展 A卷 27(4):436-441.(通讯作者)
[24]超稠油水在倾斜管路中两相流动的研究. 水动力学研究与进展A辑,2012, 27(6):742-748. (通讯作者)
[25]气液混输管线间歇流动压降研究. 管道技术与设备, 01:4-8.
[26]动态微气泡浮选除油技术研究. 工业水处理, 04:89-90.(通讯作者)
[27]柱型旋流器内单相流场压降的实验研究. 水动力学研究与进展A辑, 06:851-856.
[28]油水井带压作业装置中环形密封胶芯的设. 石油化工高等学校学报, 03:79-82.
[29]水平分支管路中油水两相流动研究. 水动力学研究与进展A辑, 06:702-708.
[30]天然气水合物热激励法开采模型研究. 西安石油大学学报(自然科学版), 02:44-47.
[31]液相介质对水平气液间歇流动压降的影响. 过程工程学报, 02:161-166.
[32]液相物性对气液两相管流流型和压降影响的研究. 应用基础与工程科学学报, 02:111-119.
[33]利用射流泵输送油水两相管流的实验研究. 实验流体力学, 04:49-55.