当前位置: X-MOL首页全球导师 国内导师 › 王云江

个人简介

王云江,中国科学院力学研究所研究员、博士生导师,中国科学院大学工程科学学院岗位教授。1981年生,2005年于河北师范大学获学士学位;2010年于清华大学获理学博士学位,师从王崇愚院士。2010至2013年,先后任大阪大学JSPS特别研究员、京都大学特定助理教授等职。自2014年开始在中国科学院力学研究所工作。已在Phys. Rev. Lett., Phys. Rev. B, Sci. Adv., Acta Mater., J. Mech. Phys. Solids, Appl. Phys. Lett.等刊物发表论文50余篇,引用900余次。主持自然科学基金面上、青年基金等项目;参与国家重点研发计划、基金委重大项目、中科院先导项目等重大研究任务。2010年获日本学术振兴会(JSPS)研究员奖学金,2017年入选中国科学院青年创新促进会会员。 简历 •2018/11 – 中国科学院力学研究所,研究员、博士生导师 •2014/01 – 2018/10 中国科学院力学研究所,副研究员 •2013/01 – 2013/12 京都大学,特定助理教授 •2010/10 – 2012/12 大阪大学,JSPS外国人特别研究员 •2005/09 – 2010/07 清华大学,博士 •2001/09 – 2005/07 河北师范大学,学士 招生方向 •固体力学 •计算材料力学 •材料物理 奖励 1. 2010 日本学术振兴会(JSPS)研究员奖学金 2. 2017 中国科学院青年创新促进会会员 主持项目 1. 国家自然科学基金面上项目,2021-2024;新型无序固体塑性变形微观机制的熵效应 2. 国家自然科学基金面上项目,2017-2020;金属玻璃应力松弛与蠕变多级动力学跨时间尺度计算机模拟 3. 国家重点研发计划材料基因工程关键技术与支撑平台重点专项,2017-2020;高通量并发式材料计算算法和软件;任务负责人。 4. 国家自然科学基金青年科学基金,2015-2017;非晶/纳米晶复合材料原子尺度塑性机制 5. 中国科学院青年创新促进会会员人才专项经费,2017-2020 -参与项目- 1. 国家重点研发计划材料基因工程关键技术与支撑平台重点专项,2017-2020;多场耦合条件下金属结构材料损伤演化行为的跨尺度关联评价;研究骨干。 2. 国家自然基金重大项目,2017-2020;无序合金塑性流动与强韧化机理;研究骨干。 3. 中国科学院“超常环境下系统力学问题研究与验证”先导专项(B类)项目,2016-2020;研究骨干。 4. 中国科学院前沿科学重点研究项目,2017-2021;新型高强金属材料剪切带的涌现与调控;参与。 国内外合作 具有广泛的国内外合作基础,与清华大学王崇愚院士,上海大学张统一院士;大阪大学Shigenobu Ogata教授,米兰大学Alessio Zaccone教授,罗斯基洛大学Jeppe Dyre教授,悉尼大学Peter Harrowell教授建立密切合作关系。 教授课程 《现代计算力学导论》

研究领域

主要从事材料物理与固体力学交叉的多时空尺度计算机模拟工作,在非晶态物理与力学、纳米力学、跨时间尺度模拟、高温合金等领域开展研究

•计算材料学:第一性原理与电子结构;分子动力学、跨时间尺度算法与应用;蒙特卡洛、动力学蒙特卡洛;有限元分析;材料基因工程与机器学习等。 •物理力学:晶态与非晶态物质变形物理;新金属结构材料的力学性能、强韧化机理;材料“结构--性能”关系;弹塑性本构;跨时空尺度力性关联。 •材料物理:固体缺陷、塑性变形微观机制;材料热力学与动力学;晶格动力学;热激活理论、蠕变、应力松弛;位错形核与运动、扩散、剪切转变;玻璃转变物理等。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Linked to ResearchGate; GoogleScholar; ResearchID; Orcid - 2020 - 王云江*,魏丹,韩懂,杨杰,蒋敏强,戴兰宏. 非晶态固体的结构可以决定性能吗? 力学学报 52 (2), 303 (2020). [link] Y. B. Yang, Q. Yang, D. Wei, L. H. Dai, H. B. Yu, and Y. J. Wang*, Unraveling strongly entropic effect on β-relaxation in metallic glass: Insights from enhanced atomistic samplings over experimentally relevant timescales, Phys. Rev. B 102, 174103 (2020). [link] F. H. Cao, Y. J. Wang*, and L. H. Dai*, Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment, Acta Mater. 194, 283-294 (2020). [link] D. Han, D. Wei, P. H. Cao, Y. J. Wang*, and L. H. Dai*, Statistical complexity of potential energy landscape as a dynamic signature of the glass transition, Phys. Rev. B 101, 064205 (2020). [link] D. Han, D. Wei, J. Yang, H. L. Li, M. Q. Jiang, Y. J. Wang*, L. H. Dai*, and A. Zaccone*, Atomistic structural mechanism for the glass transition: Entropic contribution, Phys. Rev. B 101, 014113 (2020). [link] L. W. Liang, Y. J. Wang*, Y. Chen, H. Y. Wang, and L. H. Dai*, Dislocation nucleation and evolution at the ferrite-cementite interface under cyclic loadings, Acta Mater. 186, 267-277 (2020). [link] X. Li#, D. Wei#, J. Y. Zhang#, X. D. Liu, Z. Li, T. Y. Wang, Q.F. He, Y. J. Wang*, J. Ma*, W. H. Wang, Y. Yang*, Ultrasonic plasticity of metallic glass near room temperature, Appl. Mater. Today 21, 100866 (2020). [link] X. F. Liu, Z. L. Tian, X. F. Zhang, H. H. Chen, T. W. Liu, Y. Chen, Y. J. Wang, and L. H. Dai*, “Self-sharpening” tungsten high-entropy alloy, Acta Mater. 186, 257-266 (2020). [link] J. Yang, J. Duan, Y. J. Wang, and M. Q. Jiang*, Complexity of plastic instability in amorphous solids: Insights from spatiotemporal evolution of vibrational modes, Eur. Phys. J. E 43, 56 (2020). [link] Z. R. Xu, D. S. Yang, J. C. Qiao*, J. M. Pelletier, D. Crespo, E. Pineda and Y. J. Wang*, Unified perspective on structural heterogeneity of a LaCe-based metallic glass from versatile dynamic stimuli, Intermetallics 125, 106922 (2020). [link] 陈迎红, 王云江, 乔吉超*. La30Ce30Al15Co25金属玻璃应力松弛行为. 力学学报 52 (3), 740 (2020). - 2019 - J. Ma, C. Yang, X. D. Liu, B. S. Shang, Q. F. He, F. C. Li, T. Y. Wang, D. Wei, X. Liang, X. Y. Wu, Y. J. Wang, F. Gong*, P. F. Guan*, W. H. Wang*, and Y. Yang*, Fast surface dynamics enabled cold joining of metallic glasses, Sci. Adv. 5, eaax7256 (2019). [link] D. Wei, J. Yang, M. Q. Jiang, L. H. Dai, Y. J. Wang, J. Dyre, I. Douglass, and Peter Harrowell, Assessing the Utility of Structure in Amorphous Materials, J. Chem. Phys. 150, 114502 (2019). [link] D. Wei, J. Yang, M. Q. Jiang, B. C. Wei, Y. J. Wang*, and L. H. Dai*, Revisiting the structure–property relationships of metallic glasses: Common spatial correlation revealed as hidden rule, Phys. Rev. B 99, 014115 (2019). (Figure was featured as a PRB Kaleidoscope) [link] J. Yang, Y. J. Wang*, A. Zaccone, E. Ma, L. H. Dai, and M. Q. Jiang*, Structural Parameter of Orientational Order to Predict the Boson Vibrational Anomaly in Glasses, Phys. Rev. Lett. 122, 015501 (2019). [link] Z. Y. Yang, Y. J. Wang*, and L. H. Dai*, Susceptibility of shear banding to chemical short-range order in metallic glasses, Scr. Mater. 162, 141 (2019). [link] Y. Liu, S. L. Cai*, M. Y. Su, Y. J. Wang, and L. H. Dai*, Hierarchical-microstructure based modeling for plastic deformation of partial recrystallized copper, Mech. Mater. 139, 103207 (2019). [link] L. W. Liang, L. Xiang, Y. J. Wang, Y. Chen, H. Y. Wang, and L. H. Dai*, Ratchetting in cold-drawn pearlitic steel wires, Metall. Mater. Trans. A 50, 4561 (2019). [link] L. Xiang, L. W. Liang, Y. J. Wang, Y. Chen, H. Y. Wang, and L. H. Dai*, One-step annealing optimizes strength-ductility tradeoff in pearlitic steel wires, Mater. Sci. Eng. A 757, 1-13 (2019). [link] G. Aral, M. M. Islam, Y. J. Wang, S. Ogata, and A. C. T. van Duin, Atomistic insights on the influence of pre-oxide shell layer and size on the compressive mechanical properties of nickel nanowires, J. Appl. Phys. 125, 165102 (2019). [link] G.-J. J. Gao, Y. J. Wang, and S. Ogata, Incorporating a soft ordered phase into an amorphous configuration enhances its uniform plastic deformation under shear, AIP Adv. 9, 015329 (2019). [link] Y. Liu, S. L. Cai*, F. G. Xu, Y. J. Wang, and L. D. Dai*, Enhancing strength without compromising ductility in copper by combining extrusion machining and heat treatment, J. Mater. Process. Technol. 267, 52 (2019). [link] - 2018 - Y. J. Wang*, J. P. Du, S. Shinzato, L. H. Dai*, and S. Ogata*, A free energy landscape perspective on the nature of collective diffusion in amorphous solids, Acta Mater. 157, 165 (2018). [link] G. Aral*, M. M. Islam, Y. J. Wang, S. Ogata, and A. C. T. van Duin, Oxyhydroxide of metallic nanowires in a molecular H2O and H2O2 environment and their effects on mechanical properties, Phys. Chem. Chem. Phys. 20, 17289 (2018). [link] - 2017- B. Y. Cui, J. Yang, J. C. Qiao, M. Q. Jiang, L. H. Dai, Y. J. Wang*, and A. Zaccone*, Atomic theory of viscoelastic response and memory effects in metallic glass, Phys. Rev. B 96, 094203 (2017). [link] Z. L. Tian, Y. J. Wang, Y. Chen, and L. H. Dai*, Strain gradient drives shear banding in metallic glass, Phys. Rev. B 96, 094103 (2017). [link] M. Q. Jiang*, M. Peterlechner, Y. J. Wang, W. H. Wang, F. Jiang, L. H. Dai, and G. Wilde, Universal structural softening in metallic glasses indicated by boson heat capacity peak, Appl. Phys. Lett. 111, 261901 (2017). [link] - 2016 - J. C. Qiao, Y. J. Wang*, L. Z. Zhao, L. H. Dai, D. Crespo, J. M. Pelletier, L. M. Keer, and Y. Yao*, Transition from stress-driven to thermally activated stress relaxation in metallic glasses, Phys. Rev. B 94, 104203 (2016). [link] J. P. Du, Y. J. Wang*, Y. C. Lo, L. Wan, and S. Ogata*, Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: An accelerated molecular dynamics study, Phys. Rev. B 94, 104110 (2016). [link] X. S. Yang#, Y. J. Wang#, H. R. Zhai, G. Y. Wang, Y. J. Su, L. H. Dai, S. Ogata, and T. Y. Zhang*, Time-, stress-, and temperature-dependent deformation in nanostructured copper: Creep tests and simulations, J. Mech. Phys. Solids 94, 191-206 (2016). [link] X. S. Yang#, Y. J. Wang#, G. Y. Wang, H. R. Zhai, L. H. Dai, and T. Y. Zhang*, Time, stress and temperature-dependent deformation in nanostructured copper: stress relaxation tests and simulations, Acta Mater. 108, 252-263 (2016). [link] Y. J. Wang*, M. Q. Jiang, Z. L. Tian, and L. H. Dai*, Direct atomic-scale evidence for shear–dilatation correlation in metallic glasses, Scr. Mater. 112, 37 (2016). [link] N. Miyazaki, M. Wakeda*, Y. J. Wang, and S. Ogata*, Prediction of pressure-promoted thermal rejuvenation in metallic glasses, npj Comput. Mater. 2, 16013 (2016). [link] Y. J. Wang*, K. Tsuchiya, and L. H. Dai*, Size-dependent plastic deformation and failure mechanisms of nanotwinned Ni3Al: insights from an atomistic cracking model, Mater. Sci. Eng. A 649, 449 (2016). [link] G. Aral*, Y. J. Wang, S. Ogata, and Adri C. T. van Duin, Effects of oxidation on tensile deformation of iron nanowires: Insights from reactive molecular dynamics simulations, J. Appl. Phys. 120, 135104 (2016). [link] M. Zhang, Y. J. Wang, and L. H. Dai*, Correlation between strain rate sensitivity and α relaxation of metallic glasses, AIP Adv. 6, 075022 (2016). [link] X. Huang, Z. Ling, Y. J. Wang, and L. H. Dai*, Intrinsic structural defects on medium range in metallic glasses, Intermetallics 75, 36-41 (2016). [link] M. Zhang, Y. J. Wang, and L. H. Dai*, Understanding the serrated flow and Johari-Goldstein relaxation of metallic glasses, J. Non-Crystalline Solids 444, 23 (2016). [link] - 2015 - Y. J. Wang*, S. Ogata*, and L. H. Dai*, Universal enthalpy-entropy compensation rule in the deformation of metallic glasses, Phys. Rev. B 92,174118 (2015). [link] J. C. Qiao, Y. J. Wang, J. M. Pelletier, Leon M. Keer, Morris E. Fine, and Y. Yao*, Characteristics of stress relaxation kinetics of La60Ni15Al25 bulk metallic glass, Acta Mater. 98, 43 (2015). [link] M. Q. Jiang*, M. Naderi, Y. J. Wang, M. Peterlechner, X. F. Liu, F. Zeng, F. Jiang, L. H. Dai, and G. Wilde, Thermal expansion accompanying the glass-liquid transition and crystallization, AIP Adv. 5, 127133 (2015). [link] M. Zhang, Y. J. Wang, and L. H. Dai*, Bridging shear transformation zone to the atomic structure of amorphous solids, J. Non-Crystalline Solids 410, 100 (2015). [link] - 2013 - Y. J. Wang*, G. J. Gao, and S. Ogata*, Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations, Phys. Rev. B 88, 115413 (2013). [link] Y. J. Wang*, A. Ishii, and S. Ogata*, Entropic effect on creep in nanocrystalline metals, Acta Mater. 61, 3866 (2013). [link] Y. J. Wang*, G. J. J. Gao, and S. Ogata*, Size-dependent transition of deformation mechanism, and nonlinear elasticity in Ni3Al nanowires, Appl. Phys. Lett. 102, 041902 (2013). [link] S. Yamamoto, Y. J. Wang*, A. Ishii, and S. Ogata*, Atomistic design of high strength crystalline-amorphous nanocomposites, Mater. Trans. 54, 1592 (2013). [link] G. J. Gao*, Y. J. Wang, and S. Ogata, Studying the elastic properties of nanocrystalline copper using a model of randomly packed uniform grains, Comput. Mater. Sci. 79, 56 (2013). [link] - 2012 - Y. J. Wang*, A. Ishii, and S. Ogata*, Grain size dependence of creep in nanocrystalline copper by molecular dynamics, Mater. Trans. 53, 156-160 (2012). [link] - 2011 - Y. J. Wang*, A. Ishii, and S. Ogata*, Transition of creep mechanism in nanocrystalline metals, Phys. Rev. B 84, 224102 (2011). (Figure was featured as a PRB Kaleidoscope) [link] Y. J. Wang, C. Y. Wang, and S. Y. Wang*, CO adsorption on small Au_n (n = 1-7) clusters supported on a reduced rutile TiO2(110) surface: a first-principles study, Chin. Phys. B 20, 036801 (2011). [link] - 2009 - Y. J. Wang* and C. Y. Wang, A comparison of the ideal strength between L12 Co3(Al,W) and Ni3Al under tension and shear from first-principles calculations, Appl. Phys. Lett. 94, 261909 (2009). [link] Y. J. Wang* and C. Y. Wang, Influence of the alloying element Re on the ideal tensile and shear strength of γ’-Ni3Al, Scr. Mater. 61, 179-200 (2009). [link] Y. J. Wang* and C. Y. Wang, Influence of the alloying elements on the elastic properties of the ternary and quaternary Nickel-base superalloys, Philos. Mag. 89, 2935-2947 (2009). [link] Y. J. Wang* and C. Y. Wang, First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers, Chin. Phys. B 18, 4339-4348 (2009). [link] Y. J. Wang and C. Y. Wang, Effect of alloying elements on the elastic properties of γ-Ni and γ’-Ni3Al from first-principles calculations, MRS Proceedings 1224, 1224-FF05-31 (2009). [link] Y. J. Wang* and C. Y. Wang, Mechanical properties and electronic structure of superhard diamondlike BC5: a first-principles study, J. Appl. Phys. 106, 043513 (2009). [link] J. Wang and Y. J. Wang*, Mechanical and electronic properties of 5d transition metal diborides MB2 (M= Re, W, Os, Ru), J. Appl. Phys. 105, 083539 (2009). [link] - 2008 - Y. J. Wang* and C. Y. Wang, A first-principles survey of the partitioning behaviors of alloying elements on γ/ γ’ interface, J. Appl. Phys. 104, 013109 (2008). [link] Y. J. Wang* and C. Y. Wang, The alloying mechanisms of Re, Ru in the quaternary Ni-based superalloys γ/ γ’ interface: a first principles calculation, Mater. Sci. Eng. A 490 (2008) 242-249. [link]

学术兼职

1.《计算力学学报》编委 2.会员:Materials Research Society (MRS), The Minerals, Metals & Materials Society (TMS), American Physical Society (APS), The Chinese Society of Theoretical and Applied Mechanics (CSTAM) 3.期刊审稿人:Phys. Rev. Lett., Phys. Rev. B, Nature Commun., J. Appl. Phys, J. Phys. Chem. Lett., Scr. Mater., J. Alloy. Compd., Sci Rep, EPL, Eur. Phys. J. B/E, Comput. Mater. Sci., Thin Solid Film, Mol. Simul., Solid State Commun., Mater. Lett., J. Non-Cryst. Solids, Manufacturing Letters, Model. Simul. Mater. Sci. Eng., Theoretical and Applied Mechanics Letters, Sci. China-Technol. Sci., Chin. Phys. B etc.

推荐链接
down
wechat
bug