当前位置: X-MOL首页全球导师 海外导师 › Sigman, Matthew S.

个人简介

2019-present Chair, Department of Chemistry 2016-present Distinguished Professor of Chemistry 2012-present Peter J. Christine S. Stang Presidential Endowed Chair of Chemistry 2009-2010 Visiting Professor, Huntsman Cancer Institute, U of U 2008-2016 Professor of Chemistry, University of Utah 2004-2008 Associate Professor of Chemistry, University of Utah 1999-2004 Assistant Professor of Chemistry, University of Utah 1996-1999 Postdoctoral Research Associate, Harvard University Mentor: Professor Eric N. Jacobsen Research Area: Enantioselective Strecker reactions 1992-1996 Graduate Student, Washington State University Thesis Advisor: Professor Bruce E. Eaton 1994-1995 NeXstar Predoctoral Fellow, NeXstar Pharmaceuticals, Boulder, CO 1992 B.S., Chemistry, Sonoma State University, California 1991 Undergraduate Research Fellow, Utah State University Mentor:Professor Michael E. Wright Research Area: Synthesis of ferrocene derived NLO-polymers

研究领域

Data Chemistry At the heart of what we study are the driving forces behind reaction performance. To accomplish this, we integrate classical physical organic chemistry techniques with data science to interrogate complex relationships between structure and function. We often employ Multivariate Linear Regression (MLR) techniques, as well as threshold analysis, decision trees, and other machine learning, statistical analysis, and data science tools to relate computationally-measured properties of reaction components (catalysts, reagents, enzymes, etc.) to measured observables (e.g., %e.e., regioselectivity, rates). These techniques are utilized in nearly every project in the lab. In the Center for Computer-Assisted Synthesis (C-CAS) and the Center for Selective C-H Functionalization (CCHF), we deploy our workflows in collaborative efforts to understand catalysis and improve synthesis. Electrochemistry Our lab is interested in utilizing electrochemical techniques to develop new reaction methodology. This strategy replaces chemical oxidants/reductants with an electrode to tune the reaction potential for a desired transformation. Developing a fundamental understanding of electrochemical processes can allow for the design of highly active catalytic materials. In the Joint Center for Energy Storage Research (JCESR), we combine electrochemical techniques with multidimensional modeling strategies to design highly stable redox active species that can be used as anolyte/catholyte materials in redox flow batteries. Enantioselective Catalysis Using multivariate linear regression techniques, we can identify statistically significant correlations to validate, and more importantly, predict a reaction’s outcome. This type of approach can be critical to probe a reaction mechanism and inform the design of superior-performing catalysts. We have initiated a program that unites optimization with mechanistic interrogation by correlating reaction outputs (e.g., enantio, site, or chemoselectivity) with structural descriptors of the reagents, substrates and catalysts involved.

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries Walser-Kuntz, R.; Yan, Y.; Sigman, M. S.; Sanford, M. S. Acc. Chem. Res. 2023, XXXX, XXX, XXX-XXX. Interrogating the Mechanistic Features of Ni(I)-Mediated Aryl Iodide Oxidative Addition Using Electroanalytical and Statistical Modeling Techniques Tang, T.; Hazra, A.; Min, D. S.; Williams, W. L.; Jones, E.; Doyle, A. G.; Sigman, M. S. J. Am. Chem. Soc. 2023, 145, 15, 8689–8699. Data science enables the development of a new class of chiral phosphoric acid catalysts Liles, J. P.; Rouget-Virbel, C.; Wahlman, J. L. H.; Rahimoff, R.; Crawford, J. M.; Medlin, A.; O'Connor, V. S.; Li, J.; Roytman, V. A.; Toste, F. D.; Sigman, M. S. Chem. 2023, 9, 1-20. Chemical Catalysis, MLR A Physical Organic Approach towards Statistical Modeling of Tetrazole and Azide Decomposition Rein, J.; Meinhardt, J. M.; Hoftstra Wahlman, J. L.; Sigman, M. S.; Lin, S.Angew. Chem. Int. Ed., 2023, e202218213. Small Molecule Properties Define Partitioning into Biomolecular Condensates Thody, S. A.; Clements, H. D.; Baniasadi, H.; Lyon, A. S.; Sigman, M. S.; Rosen, M. K.BioRxiv, 2022, 2022.12.19.521099. Catalytic asymmetric C–H insertion reactions of vinyl carbocations Nistanaki, S. K.; Williams, C. G.; Wigman, B.; Wong, J. J.; Haas, B. C.; Popov, S.; Werth, J.; Sigman, M. S.*; Houk, K.N.*; Nelson, H. M.*Science, 2022, 378, 1085-1091. Benzotriazoles as Low-Potential Anolytes for Non-aqueous Redox Flow Batteries Yan, Y.; Zhang, L.; Wasler-Kuntz, R.; Vogt, D. B.; Sigman, M. S.; Yu, G.*; Sanford, M. S.* Chem. Mater. 2022, 34, 23, 10594–10605. Exploring Structure–Function Relationships of Aryl Pyrrolidine-Based Hydrogen-Bond Donors in Asymmetric Catalysis Using Data-Driven Techniques Samha, M. H.; Wahlman, J. L. H.; Read, J. A.; Werth, J.; Jacobsen, E. N.; and Sigman, M. S.* ACS Catal. 2022, 12, 14836–14845. Generality-Oriented Optimization of Enantioselective Aminoxyl Radical Catalysis Rein, K.; Rozema, S.; Langner, O.; Zacate, S.; Hardy, M.; Siu, J.; Mercado, B.; Sigman, M.; Miller, S.; Lin, S. ChemRxiv, 2022. Atroposelective Negishi Coupling Optimization Guided by Multivariate Linear Regression Analysis: Asymmetric Synthesis of KRAS G12C Covalent Inhibitor GDC-6036 Xu, J.; Grosslight, S.; Mack, K. A.; Nguyen, S. C.; Clagg, K.; Lim, N. K.; Timmerman, J. C.; Shen, J.; White, N. A.; Sirois, L. E.; Han, C.; Zhang, H.; Sigman, M. S.; Gosselin, F. J. Am. Chem. Soc. 2022, 144, 45, 20955-20963. Comparing Halogen Atom Abstraction Kinetics for Mn(I), Fe(I), Co(I), and Ni(I) Complexes by Combining Electroanalytical and Statistical Modeling Tang, T.; Friede, N. C.; Minteer, S. D.; Sigman, M. S. Eur. J. Org. Chem. 2022, e202200064. Investigating Oxidative Addition Mechanisms of Allylic Electrophiles with Low-Valent Ni/Co Catalysts using Electroanalytical and Data Science Techniques Tang, T.; Jones, E.; Wild, T.; Hazra, A.; Minteer, S. D.; Sigman, M. S. J. Am. Chem. Soc. 2022, 144, 43, 20056-20066. Data Science-Driven Analysis of Substrate-Permissive Diketopiperazine Reverse Prenyltransferase NotF: Applications in Protein Engineering and Cascade Biocatalytic Synthesis of (−)-Eurotiumin A Kelly, S. P.; Shende, V. V.; Flynn, A. R.; Dan, Q.; Ye, Y.; Smith, J. L.; Tsukamoto, S.; Sigman, M. S.; Sherman, D. H. J. Am. Chem. Soc. 2022, 144, 42, 19326-19336. Noncovalent Stabilization of Radical Intermediates in the Enantioselective Hydroamination of Alkenes with Sulfonamides Xu, E. Y.; Werth, J.; Roos, C. B.; Bendelsmith, A. J.; Sigman, M. S.; Knowles, R. R. J. Am. Chem. Soc. 2022, 144, 41, 18948-18958.. Chemical Catalysis, MLR Theoretical and Experimental Investigation of Functionalized Cyanopyridines Yield an Extremely Low-Reduction-Potential Anolyte for Nonaqueous Redox Flow Batteries Vaid, T.; Cook, M.; Scott, J.; Carazo, M. B.; Ruchti, J.; Minteer, S.; Sigman, M.; McNeil, A.; Sanford, M. Chem. Eur. J. 2022, e202202147 Leveraging Regio- and Stereoselective C(sp3)–H Functionalization of Silyl Ethers to Train a Logistic Regression Classification Model for Predicting Site-Selectivity Bias Boni, Y. T.; Cammarota, R. C.; Liao, K.; Sigman, M. S.; Davies, H. M. L. J. Am. Chem. Soc. 2022, 144, 34, 15549-15591. Data-Driven Multi-Objective Optimization Tactics for Catalytic Asymmetric Reactions Dotson, J. J.; van Dijk, L.; Timmerman, J. C.; Grosslight, S.; Walroth, R. C.; Gosselin, F.; Püntener, K.; Mack, K. A.; Sigman, M. S. J. Am. Chem. Soc. 2022, 145, 1, 110–121. Statistical Analysis of Catalytic Performance in Ethylene/Methyl Acrylate Copolymerization Using Palladium/Phosphine-Sulfonate Catalysts Akita, S.; Guo, J.Y.; Seidel, F.; Sigman, M.; Nozaki, K. Organometallics, 2022 Cobalt-electrocatalytic HAT for functionalization of unsaturated C–C bonds Gnaim, S.; Bauer, A.; Zhang, H.J.; Chen, L.; Gannett, C.; Malapit, C.; Hill, D.; Vogt, D.; Tang, T.; Daley, R.; Hao, W.; Zeng, R.; Quertenmon, M.; Beck, W.; Kandahari, E.; Vantourout, J.; Echeverria, P.G.; Abruna, H.; Blackmond, D.; Minteer, S.; Reisman, S.; Sigman, M.; Baran, P.Nature, 2022, 605, 687–695. Workflow for Biocatalytic Reaction Performance Prediction and Analysis Clements, H. D.*; Flynn, A. R.*; Nicholls, B. T.; Grosheva, D.; Hyster, T. K*.; Sigman, M. S.* ChemRxiv, 2021 An Explosophore-Based Approach Towards the Prediction of Energetic Material Sensitivity Properties Rein, J.; Meinhardt, J. M.; Julie L. Wahlman, J. L. H.; Sigman, M. S.*; Lin, S.* ChemRxiv, 2021 Electrochemical Cobalt-Catalyzed Selective Carboxylation of Benzyl Halides with CO2 Enabled by Low-Coordinate Cobalt Electrocatalysts Malapit, C. A.; Tanwar, M.; Pendergast, A. D.; Udyavara, S.; Beck, W. D.; Smith, R. E.; Kadic, S.; Primo, T.; Wu, A. D.; Stone, T.; White, H. S.*; Neurock, M.*; Sigman, M. S.*; Minteer, S. D.* ChemRxiv, 2021 Design and Application of a Screening Set for Monophosphine Ligands in Metal Catalysis Tobias Gensch, T.*; Smith, S. R.; Colacot, T. J.; Timsina, Y.; Xu, G.; Glasspoole, B. W.; Sigman, M. S.* ACS Catal. 2022, 12, 13, 7773–7780 Predicting Relative Efficiency of Amide Bond Formation using Multivariate Linear Regression Haas, B. C.; Goetz, A. E.*; Bahamonde, A.; McWilliams, J. C.; Sigman, M. S.*PNAS, 2022, 119, 16, e2118451119. Development of High Energy Density Diaminocyclopropenium-Phenothiazine Hybrid Catholytes for Non-Aqueous Redox Flow Batteries Yan, Y.; Vogt, D. B.; Sigman, M. S.; Sanford, M. S.*Angew. Chem. Int. Ed., 2021, 60, 27039-27045 Stereoconvergent and -divergent Synthesis of Tetrasubstituted Alkenes by Nickel-Catalyzed Cross-Couplings Zell, D.*; Kingston, C.; Jermaks, J.; Smith, S. R.; Seeger, N.; Wassmer, J.; Sirois, L. E.; Han, C.; Zhang, H.; Sigman, M. S.*; Gosselin, F. J. Am. Chem. Soc. 2021, 143, 19078-19090 Chemical Catalysis, MLR Development and Molecular Understanding of a Pd-catalyzed Cyanation of Aryl Boronic Acids Enabled by High-Throughput Experimentation and Data Analysis De Jesus Silva, J.; Bartalucci, N.; Jelier, B.; Grosslight, S.; Gensch, T.; Schünemann, C.; Müller, B.; Kamer, P. C. J.; Copéret, C.*; Sigman, M. S.*; Togni, A.*Helv. Chim. Acta 2021,e2100200 Chemical Catalysis, MLR Simultaneously Enhancing the Redox Potential and Stability of Multi-Redox Organic Catholytes by Incorporating Cyclopropenium Substituents Yichao Yan, Y.; Robinson, S. G.; Vaid, T. P.; Sigman, M. S.; Sanford, M.S.* J. Am. Chem. Soc. 2021, 143, 13450–13459 The Evolution of Data-Driven Modeling in Organic Chemistry Williams, W. L.; Zeng, L.; ‡, Gensch, T.*; Sigman, M. S.*; Doyle, A. G.*; Anslyn, E. V.* ACS Central Science, 2021, 7, 1622–1637 Data Science Meets Physical Organic Chemistry Crawford, J. M.; Kingston, C.; Toste, F. D.*; Sigman, M. S.* Acc. Chem. Res. 2021, 54, 3136–3148 Data-science driven autonomous process optimization Christensen, M.; Yunker, L. P. E.; Adedeji, F.; Roch, L. M.; Gensch, T.; dos Passos Gomes, G.; Zepel, T.; Sigman, M. S.*; Aspuru-Guzik, A.*; Hein, J. E.*Commun Chem 2021, 4, 112 Chemical Catalysis, MLR Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C–H Functionalization Reactions Ryan C. Cammarota, Wenbin Liu, John Bacsa, Huw M. L. Davies*, and Matthew S. Sigman* J. Am. Chem. Soc. 2022, 144, 4, 1881–1898 Structural and Data Science-Driven Analysis to Assess Substrate Specificity of Diketopiperazine Reverse Prenyltransferase NotF: Cascade Biocatalytic Synthesis of (–)-Eurotiumin A Kelly, S.P.*; Shende, V.V.*; Flynn, A.R.; Dan, Q.; Ye, Y.; Smith, J.L.; Tsukamoto, S.; Sigman, M.S.; Sherman, D.H.* J. Am. Chem. Soc. 2022, 144, 42, 19326–19336. Experimental Protocols for Studying Organic Non-aqueous Redox Flow Batteries Min Li, Susan A. Odom*, Adam R. Pancoast, Lily A. Robertson, Thomas P. Vaid, Garvit Agarwal, Hieu A. Doan, Yilin Wang, T. Malsha Suduwella, Sambasiva R. Bheemireddy, Randy H. Ewoldt, Rajeev S. Assary, Lu Zhang, Matthew S. Sigman, and Shelley D. Minteer* ACS Energy Lett. 2021, 6, 11, 3932–3943 Nickel-catalyzed asymmetric reductive cross-coupling of α-chloroesters with (hetero)aryl iodides Travis J. DeLano, Sara E. Dibrell, Caitlin R. Lacker, Adam R. Pancoast, Kelsey E. Poremba, Leah Cleary, Matthew S. Sigman and Sarah E. Reisman Chem. Sci., 2021, 12, 7758-7762 Chemical Catalysis, MLR A Data-Driven Approach to the Development and Understanding of Chiroptical Sensors for Alcohols with Remote γ-Stereocenters Jordan J. Dotson, Eric V. Anslyn*, and Matthew S. Sigman* J. Am. Chem. Soc. 2021, 143, 45, 19187–19198 Univariate classification of phosphine ligation state and reactivity in cross-coupling catalysis Newman-Stonebraker, S. H.; Smith, S. R.; Borowski, J. E.; Gensch, T.; Peters, E. B.; Johnson, H. C.; Sigman, M. S.*; Doyle, A. G.*Science, 2021, 347(6565), 301 Carbon Atom Insertion into Pyrroles and Indoles Promoted by Chlorodiazirines Dherange, B. D.; Kelly, P. Q.; Liles, J. P.; Sigman, M. S.; Levin, M. D.* J. Am. Chem. Soc. 2021, 143, 30, 11337–11344 Chemical Catalysis, MLR A Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis Gensch, T; dos Passos Gomes, G.; Friederich, P.; Peters, E.; Gaudin, T.; Pollice, R.; Jorner, K.; Nigam, A. Lindner-D'Addario; M.; Sigman, M. S.*; Aspuru-Guzik, A.* J. Am. Chem. Soc. 2022, 144, 3, 1205–1217 Advancing Discovery in Chemistry with Artificial Intelligence: From Reaction Outcomes to New Materials and Catalysts Kulik, H.J.*; Sigman, M. S. Acc. Chem. Res., 2021, 54, 2335-2336 Mechanistic Guidance Leads to Enhanced Site-Selectivity in C-H Oxidation Reactions Catalyzed by Ruthenium bs(Bipyridine) Complexes Griffin, J.D; Vogt, D.B.; Du Bios, J.; Sigman, M.S. ACS Catal., 2021, 11, 10479-10486 Chemical Catalysis, MLR N-Ammonium Ylide Mediators for Electrochemical C–H Oxidation,Saito, M.; Kawamata, Y.; Meanwell, M.; Navratil, R.; Chiodi, D.; Carlson, E.; Hu, P.; Chen, L.; Udyavara, S.; Kingston, C.; Tanwar. M.; Tyagi, S.; McKillican, B. P.; Gichinga, M. G.; Schmidt, M. A.; Eastgate, M. D.; Lamberto, M.-L.; He, C.; Tang, T.; Malapit, C.; Sigman, M. S.; Minteer, S. D.; Neurock, M.*; Baran, P. S.* J. Am. Chem. Soc., 2021, 20, 7859-7867 Linear Regression Model Development for Analysis of Asymmetric Copper-Bisoxazoline Catalysis Werth, J.; Sigman, M. S. ACS Catal. 2021, 11, 3916–3922 Chemical Catalysis, MLR Rate Profiling the Impact of Remote Functional Groups on the Redox-Relay Heck Reaction Kraus, S.L.; Ross, S.P.; Sigman, M.S. Org. Lett. 2021, 23, 7, 2505–2509 Chemical Catalysis, MLR Analyzing mechanisms in Co(i) redox catalysis using a pattern recognition platform Tang, T.; Sanford, C.; Minteer, S.D.; Sigman, M.S. Chem. Sci., 2021, 12, 4771-4778 Interrogation of 2,2′-Bipyrimidines as Low-Potential Two-Electron Electrolytes Griffin, J. D.; Pancoast, A. R.; Sigman, M. S. J. Am. Chem. Soc., 2021,143, 992 Mechanistic Studies Inform Design of Improved Ti(salen) Catalysts for Enantioselective [3 + 2] Cycloaddition Robinson, S.G.; Wu, X.; Jiang, B.; Sigman, M.S.; Lin, S. J. Am. Chem. Soc., 2020, 142, 43, 18471–18482 Chemical Catalysis, MLR Catalytic Enantioselective Synthesis of Difluorinated Alkyl Bromides Levin, M. D.; Ovian, J. M.; Read, J. A.; Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc., 2020, 142, 35, 14831–14837 Chemical Catalysis Connecting and Analyzing Enantioselective Bifunctional Hydrogen Bond Donor Catalysis Using Data Science Tools Werth, J.; Sigman, M. S. J. Am. Chem. Soc., 2020,142, 16382 Chemical Catalysis, MLR Organic Chemistry: A Call to Action for Diversity and Inclusion Reisman, S. E.; Sarpong, R.; Sigman, M. S.; Yoon, T. P. Org. Lett. 2020, 22, 16, 6223–6228 Enantioselective Intramolecular Allylic Substitution via Synergistic Palladium/Chiral Phosphoric Acid Catalysis: Insight into Stereoinduction through Statistical Modeling Tsai, C.-C.; Sandford, C.; Wu, T.; Che, B.; Sigman, M. S.; Toste, F. D. Angew. Chem. Int. Ed., 2020, 59, 14647-14655 Chemical Catalysis, MLR Molecular-level insight in supported olefin metathesis catalysts by combining surface organometallic chemistry, high throughput experimentation, and data analysis De Jesus Silva, J.; Ferreira, M. A. B.; Fedorov, A.; Sigman, M. S.; Copéret, C. Chem. Sci., 2020,11, 6717-6723 Chemical Catalysis, MLR Electrochemical Ruthenium-Catalyzed C–H Hydroxylation of Amine Derivatives in Aqueous Acid Robinson, S. G.; Mack, J. B. C.; Alektiar, S. N.; Du Bois, J.; Sigman, M. S. Org. Lett. 2020, 22, 18, 7060–7063 Chemical Catalysis, Electrocatalysis Development and Mechanistic Interrogation of Interrupted Chain-Walking in the Enantioselective Relay Heck Reaction Ross, S. P.; Rahman, A. A.; Sigman, M. S. J. Am. Chem. Soc. 2020, 23, 10516-10525 Chemical Catalysis Transition State Force Field for the Asymmetric Redox-Relay Heck Reaction Rosales, A. R.; Ross, S. P.; Helquist, P.; Norrby, P.-O.; Sigman, M. S.; Wiest, O. J. Am. Chem. Soc., 2020, 21, 9700-9707 Chemical Catalysis, MLR Realization of an Asymmetric Non-Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition Shrestha, A.; Hendriks, K. H.; Sigman, M. S.; Minteer, S. D.; Sanford, M. S. Chem. Eur. J. 2020, 26, 5369 Strategies for remote enantiocontrol in chiral gold(iii) complexes applied to catalytic enantioselective γ,δ-Diels–Alder reactions Reid, J. P.; Hu, M.; Ito, S.; Huang, B.; Hong, C. M.; Xiang, H.; Sigman, M. S.; Toste, F. D. Chem. Sci., 2020,11, 6450-6456 Chemical Catalysis Enantioselective Allenoate-Claisen Rearrangement Using Chiral Phosphate Catalysts Miró, J.; Gensch, T.; Ellwart, M.; Han, S.-J.; Lin, H.-H.; Sigman, M. S.; Toste, F. D. J. Am. Chem. Soc. 2020, 142, 6390 Integrating Electrochemical and Statistical Analysis Tools for Molecular Design and Mechanistic Understanding Robinson, S. G.; Sigman, M. S. Acc. Chem. Res. 2020, 53, 2, 289

推荐链接
down
wechat
bug