近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. He, Z.; Ning, X.; Yang, G.; Wang, H.; Cao, Y.; Peng, F.; Yu, H., Selective oxidation of glycerol over supported noble metal catalysts. Catalysis Today 2020.
2. Fu, H.; Huang, K.; Yang, G.; Cao, Y.; Wang, H.; Peng, F.; Wang, Q.; Yu, H., Synergistic Effect of Nitrogen Dopants on Carbon Nanotubes on the Catalytic Selective Epoxidation of Styrene. ACS Catal. 2020, 10 (1), 129-137.
3. Dang, C.; Wu, S.; Yang, G.; Cao, Y.; Wang, H.; Peng, F.; Yu, H., Syngas production by dry reforming of the mixture of glycerol and ethanol with CaCO3. Journal of Energy Chemistry 2020, 43, 90-97.
4. Dang, C.; Wu, S.; Yang, G.; Cao, Y.; Wang, H.; Peng, F.; Wang, S.; Yu, H., Hydrogen Production from Sorption-Enhanced Steam Reforming of Phenol over a Ni–Ca–Al–O Bifunctional Catalyst. ACS Sustain. Chem. Eng. 2020, 8 (18), 7111-7120.
5. Dang, C.; Liu, L.; Yang, G.; Cai, W.; Long, J.; Yu, H., Mg-promoted Ni-CaO microsphere as bi-functional catalyst for hydrogen production from sorption-enhanced steam reforming of glycerol. Chem. Eng. J. 2020, 383, 123204.
6. Peng, C.; Xu, W.; Wei, P.; Liu, M.; Guo, L.; Wu, P.; Zhang, K.; Cao, Y.; Wang, H.; Yu, H.; Peng, F.; Yan, X., Manipulating photocatalytic pathway and activity of ternary Cu2O/(001)TiO2@Ti3C2Tx catalysts for H2 evolution: Effect of surface coverage. Int J Hydrogen Energ 2019, 44 (57), 29975-29985.
7. Ning, X.; Li, Y.; Ming, J.; Wang, Q.; Wang, H.; Cao, Y.; Peng, F.; Yang, Y.; Yu, H., Electronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chemical Science 2019, 10 (6), 1589-1596.
8. Meng, Z.; Liu, Y.; Yang, G.; Cao, Y.; Wang, H.; Peng, F.; Liu, P.; Yu, H., Electron-Rich Ruthenium on Nitrogen-Doped Carbons Promoting Levulinic Acid Hydrogenation to γ-Valerolactone: Effect of Metal–Support Interaction. ACS Sustain. Chem. Eng. 2019, 7 (19), 16501-16510.
9. Huang, K.; Fu, H.; Shi, W.; Wang, H.; Cao, Y.; Yang, G.; Peng, F.; Wang, Q.; Liu, Z.; Zhang, B.; Yu, H., Competitive adsorption on single-atom catalysts: Mechanistic insights into the aerobic oxidation of alcohols over CoNC. J Catal 2019, 377, 283-292.
10. He, Z.; Dong, B.; Wang, W.; Yang, G.; Cao, Y.; Wang, H.; Yang, Y.; Wang, Q.; Peng, F.; Yu, H., Elucidating Interaction between Palladium and N-Doped Carbon Nanotubes: Effect of Electronic Property on Activity for Nitrobenzene Hydrogenation. ACS Catal. 2019, 9, 2893-2901.
11. Dang, C.; Wu, S.; Cao, Y.; Wang, H.; Peng, F.; Yu, H., Co-production of high quality hydrogen and synthesis gas via sorption-enhanced steam reforming of glycerol coupled with methane reforming of carbonates. Chem. Eng. J. 2019, 360, 47-53.
12. Peng, C.; Wei, P.; Li, X.; Liu, Y.; Cao, Y.; Wang, H.; Yu, H.; Peng, F.; Zhang, L.; Zhang, B.; Lv, K., High efficiency photocatalytic hydrogen production over ternary Cu/TiO2@Ti3C2Tx enabled by low-work-function 2D titanium carbide. Nano Energy 2018, 53, 97-107.
13. Mu, C.; Cao, Y.; Wang, H.; Yu, H.; Peng, F., A kinetics study on cumene oxidation catalyzed by carbon nanotubes: Effect of N-doping. Chem Eng Sci 2018, 177, 391-398.
14. Dang, C.; Li, Y.; Yusuf, S. M.; Cao, Y.; Wang, H.; Yu, H.; Peng, F.; Li, F., Calcium cobaltate: a phase-change catalyst for stable hydrogen production from bio-glycerol. Energy & Environmental Science 2018, 11 (3), 660-668.
15. Cao, Y.; Li, B.; Zhong, G.; Li, Y.; Wang, H.; Yu, H.; Peng, F., Catalytic wet air oxidation of phenol over carbon nanotubes: Synergistic effect of carboxyl groups and edge carbons. Carbon 2018, 133, 464-473.
16. Yang, X.; Cao, Y.; Yu, H.; Huang, H.; Wang, H.; Peng, F., Unravelling the radical transition during the carbon-catalyzed oxidation of cyclohexane by in situ electron paramagnetic resonance in the liquid phase. Catal Sci Technol 2017, 7 (19), 4431-4436.
17. Peng, C.; Wang, H. J.; Yu, H.; Peng, F., (111) TiO2-x/Ti3C2: Synergy of active facets, interfacial charge transfer and Ti3+ doping for enhance photocatalytic activity. Mater Res Bull 2017, 89, 16-25.
18. Ning, X.; Li, Y.; Dong, B.; Wang, H.; Yu, H.; Peng, F.; Yang, Y., Electron transfer dependent catalysis of Pt on N-doped carbon nanotubes: Effects of synthesis method on metal-support interaction. J Catal 2017, 348, 100-109.
19. Dong, B.; Li, Y.; Ning, X.; Wang, H.; Yu, H.; Peng, F., Trace iron impurities deactivate palladium supported on nitrogen-doped carbon nanotubes for nitrobenzene hydrogenation. Applied Catalysis A: General 2017, 545, 54-63.
20. Dang, C.; Wang, H.; Yu, H.; Peng, F., Co-Cu-CaO catalysts for high-purity hydrogen from sorption-enhanced steam reforming of glycerol. Applied Catalysis A: General 2017, 533, 9-16.
21. Peng, C.; Yang, X.; Li, Y.; Yu, H.; Wang, H.; Peng, F., Hybrids of Two-Dimensional Ti3C2 and TiO2 Exposing {001} Facets toward Enhanced Photocatalytic Activity. ACS Appl. Mater. Inter. 2016, 8 (9), 6051-60.
22. Ning, X.; Li, Y.; Yu, H.; Peng, F.; Wang, H.; Yang, Y., Promoting role of bismuth and antimony on Pt catalysts for the selective oxidation of glycerol to dihydroxyacetone. J Catal 2016, 335, 95-104.
23. Mu, C.; Huang, K.; Cheng, T.; Wang, H.; Yu, H.; Peng, F., Ni foams decorated with carbon nanotubes as catalytic stirrers for aerobic oxidation of cumene. Chem. Eng. J. 2016, 306, 806-815.
24. Dang, C.; Yu, H.; Wang, H.; Peng, F.; Yang, Y., A bi-functional Co–CaO–Ca12Al14O33 catalyst for sorption-enhanced steam reforming of glycerol to high-purity hydrogen. Chem. Eng. J. 2016, 286, 329-338.
25. Cheng, T.; Yu, H.; Peng, F.; Wang, H.; Zhang, B.; Su, D., Identifying active sites of CoNC/CNT from pyrolysis of molecularly defined complexes for oxidative esterification and hydrogenation reactions. Catal Sci Technol 2016, 6 (4), 1007-1015.
26. Wu, Y. S.; Shi, Q. Q.; Li, Y. H.; Lai, Z. C.; Yu, H.; Wang, H. J.; Peng, F., Nitrogen-doped graphene-supported cobalt carbonitride@oxide core-shell nanoparticles as a non-noble metal electrocatalyst for an oxygen reduction reaction. Journal of Materials Chemistry A 2015, 3 (3), 1142-1151.
27. Ning, X.; Yu, H.; Peng, F.; Wang, H., Pt nanoparticles interacting with graphitic nitrogen of N-doped carbon nanotubes: Effect of electronic properties on activity for aerobic oxidation of glycerol and electro-oxidation of CO. J Catal 2015, 325 (0), 136-144.
28. Huang, X.; Dang, C.; Yu, H.; Wang, H.; Peng, F., Morphology Effect of Ir/La2O2CO3 Nanorods with Selectively Exposed {110} Facets in Catalytic Steam Reforming of Glycerol. ACS Catal. 2015, 5 (2), 1155-1163.
29. Cao, Y. H.; Li, Y. H.; Yu, H.; Peng, F.; Wang, H. J., Aerobic oxidation of α-pinene catalyzed by carbon nanotubes. Catal Sci Technol 2015, 5 (8), 3935-3944.
30. Cao, Y. H.; Yu, H.; Peng, F.; Wang, H. J., Selective Allylic Oxidation of Cyclohexene Catalyzed by Nitrogen-Doped Carbon Nanotubes. ACS Catal. 2014, 4 (5), 1617-1625.
31. Yang, X. X.; Wang, H. J.; Li, J.; Zheng, W. X.; Xiang, R.; Tang, Z. K.; Yu, H.; Peng, F., Mechanistic Insight into the Catalytic Oxidation of Cyclohexane over Carbon Nanotubes: Kinetic and In Situ Spectroscopic Evidence. Chemistry-a European Journal 2013, 19 (30), 9818-9824.
32. Cao, Y. H.; Yu, H.; Tan, J.; Peng, F.; Wang, H. J.; Li, J.; Zheng, W. X.; Wong, N. B., Nitrogen-, phosphorous- and boron-doped carbon nanotubes as catalysts for the aerobic oxidation of cyclohexane. Carbon 2013, 57, 433-442.
33. Cao, Y. H.; Luo, X. Y.; Yu, H.; Peng, F.; Wang, H. J.; Ning, G. Q., sp2- and sp3 -hybridized carbon materials as catalysts for aerobic oxidation of cyclohexane. Catal Sci Technol 2013, 3 (10), 2654-2660.
34. Yang, X. X.; Yu, H.; Peng, F.; Wang, H. J., Confined Iron Nanowires Enhance the Catalytic Activity of Carbon Nanotubes in the Aerobic Oxidation of Cyclohexane. Chemsuschem 2012, 5 (7), 1213-1217.
35. Yang, G. X.; Yu, H.; Huang, X. Y.; Peng, F.; Wang, H. J., Effect of calcium dopant on catalysis of Ir/La2O3 for hydrogen production by oxidative steam reforming of glycerol. Applied Catalysis B-Environmental 2012, 127, 89-98.
36. Yu, H.; Peng, F.; Tan, J.; Hu, X. W.; Wang, H. J.; Yang, J. A.; Zheng, W. X., Selective Catalysis of the Aerobic Oxidation of Cyclohexane in the Liquid Phase by Carbon Nanotubes. Angew. Chem. Int. Ed. 2011, 50 (17), 3978-3982.
37. Yang, G. X.; Yu, H.; Peng, F.; Wang, H. J.; Yang, J. A.; Xie, D. L., Thermodynamic analysis of hydrogen generation via oxidative steam reforming of glycerol. Renewable Energy 2011, 36 (8), 2120-2127.
38. Li, J. C.; Yu, H.; Yang, G. X.; Peng, F.; Xie, D. L.; Wang, H. J.; Yang, J., Steam Reforming of Oxygenate Fuels for Hydrogen Production: A Thermodynamic Study. Energy & Fuels 2011, 25 (6), 2643-2650.
39. Chen, H. Q.; Yu, H.; Yang, G. X.; Peng, F.; Wang, H. J.; Yang, J. A., Auto-thermal ethanol micro-reformer with a structural Ir/La2O3/ZrO2 catalyst for hydrogen production. Chem. Eng. J. 2011, 167 (1), 322-327.
40. Chen, H. Q.; Yu, H.; Peng, F.; Yang, G. X.; Wang, H. J.; Yang, J.; Tang, Y., Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3. Chem. Eng. J. 2010, 160 (1), 333-339.
41. Chen, H. Q.; Yu, H.; Peng, F.; Wang, H. J.; Yang, J.; Pan, M. Q., Efficient and stable oxidative steam reforming of ethanol for hydrogen production: Effect of in situ dispersion of Ir over Ir/La2O3. J Catal 2010, 269 (2), 281-290.