个人简介
B.S. University of Illinois, 1987
Ph.D. University of Utah, 1993
Postdoctoral Fellow, The Scripps Research Institute, 1993-1997
研究领域
Biochemistry
Membrane Protein Assembly, Proteases, Biophysics
Our lab’s central interest is the determination of how proteins are transported and inserted into membrane to obtain their proper structure. We are employing biochemical and in vivo approaches to understand membrane protein assembly. We have identified a novel protein, YidC that specializes in membrane protein topogenesis. The general relevance of this finding is underscored by the homology of YidC to the mitochondrial Oxa1, which functions in a novel pathway for insertion of inner membrane proteins from the mitochondrial matrix compartment. The goal now is to determine the substrate specificity of YidC, to determine the function of YidC in the integration and folding of multispanning membrane proteins, define the structural features of YidC and the insertion pore of the YidC dimer. Another serious interest here is the study of proteases involved in the cleavage of proteins and peptides that are transiently associated with cellular membranes. These proteases such as signal peptidase and signal peptide peptidases are crucially important for a wide range of essential biological processes. We are very interested in how the cell meets the “chemical challenge” of peptide bond hydrolysis in proteins that are shielded by non-aqueous environments.
Recent graduates from the Dalbey lab hold faculty positions at the University of Pittsburg, Simon Fraser University, and Kwandong University. They hold research positions at National Institutes of Health (NIH), MIT, and Duke, and have industrial positions at Novartis, Eli Lilly, and Abbott Pharmaceuticals. Funding from the lab has come primarily from NIH and National Science Foundation (NSF) over the years.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Xu Y, Oruganti SV, Gopalan V, Foster MP. "Thermodynamics of Coupled Folding in the Interaction of Archaeal RNase P Proteins RPP21 and RPP29." (2012) Biochemistry 51 (4):926–935. doi: 10.1021/bi201674d
Kleckner IR, Foster MP. "GUARDD: User-friendly MATLAB software for rigorous analysis of CPMG RD NMR data." (2012) J Biomol NMR 52:11-22. doi: 10.1007/s10858-011-9589-y
Kleckner IR, Gollnick P, Foster MP. "Mechanisms of Allosteric Gene Regulation by NMR Quantification of μs-ms Protein Dynamics." (2012) J Mol Biol 415(2): 372-381. doi: 10.1016/j.jmb.2011.11.019
Crowe BL, Bohlen CJ, Wilson RC, Gopalan V, Foster MP. "Assembly of the Complex between Archaeal RNase P Proteins RPP30 and Pop5." (2011) Archaea 2011: Article ID 891531. doi:10.1155/2011/891531,
Chen WY, Xu Y, Cho IM, Oruganti SV, Foster MP, Gopalan V. "Cooperative RNP assembly: complementary rescue of structural defects by protein and RNA subunits of archaeal RNase P." (2011) J Mol Biol. 411(2):368-83.doi:10.1016/j.jmb.2011.05.012
Wilson RC, Smith AM, Fuchs RT, Kleckner IR, Henkin TM, Foster MP. "Tuning Riboswitch Regulation through Conformational Selection." (2011) J Mol Biol 405(4):926-38. doi:j.jmb.2010.10.056,
Kleckner IR, Foster MP. "An Introduction to NMR-based Approaches for Measuring Protein Dynamics." (2010) BBA - Proteins and Proteomics. Special Issue: Protein Dynamics.1841(8):942-968 (http://dx.doi.org/10.1016/j.bbapap.2010.10.012)
Sachleben JR, McElroy CA, Gollnick P, Foster MP. "Mechanism for pH-dependent gene regulation by amino-terminus-mediated homooligomerization of Bacillus subtilis anti-trp RNA-binding attenuation protein." (2010) Proc Natl Acad Sci U S A 107(35):15385-90 doi: 10.1073/pnas.1004981107
Xu Y, Amero CD, Pulukkunat DK, Gopalan V, Foster MP. "Solution structure of an archaeal RNase P binary protein complex: formation of the 30-kDa complex between Pyrococcus furiosus RPP21 and RPP29 is accompanied by coupled protein folding and highlights critical features for protein-protein and protein-RNA interactions." (2009) J Mol Biol. 393(5):1043-55. (http://dx.doi.org/10.1016/j.jmb.2009.08.068; PMC2782587)
Amero CD, Byerly DW, McElroy CA, Simmons A, Foster MP. "Ligand-induced changes in the structure and dynamics of Escherichia coli peptide deformylase." (2009) Biochemistry. 48(32):7595-607. DOI: 10.1021/bi900600b (SI). Addendum.
Amero CD, Boomershine WP, Xu Y, Foster M. "Solution structure of Pyrococcus furiosus RPP21, a component of the archaeal RNase P holoenzyme, and interactions with its RPP29 protein partner." (2008) Biochemistry. 47(45):11704-10. DOI: 10.1021/bi8015982 (html)
Kamadurai HB, Jain R and Foster MP, "Crystallization and structure determination of the core-binding domain of bacteriophage lambda integrase." (2008) Acta Crystallographica F, 64(6):470-473. (doi:10.1107/S174430910801381X)
Amero CD, Arnold JJ, Moustafa IM, Cameron CE, and Foster MP, "Identification of the oriI-binding site of poliovirus 3C protein by NMR spectroscopy." (2008) J Virol, 82(9):4363-70, PMID: 18305026. (doi:10.1128/JVI.02087-07, )
Kamadurai HB, Foster MP, "DNA recognition via mutual-induced fit by the core-binding domain of bacteriophage lambda integrase." (2007) Biochemistry, 46(49):13939-47.DOI: 10.1021/bi700974t
Subramaniam S, Kamadurai HB, Foster MP, "Trans Cooperativity by a Split DNA Recombinase: The Central and Catalytic Domains of Bacteriophage Lambda Integrase Cooperate in Cleaving DNA Substrates When the Two Domains Are not Covalently Linked." (2007) J Mol Biol. 370(2):303 - 314.doi:10.1016/j.jmb.2007.04.024
Foster MP, McElroy CA, Amero CD, "Solution NMR of Large Molecules and Assemblies." (2007) Biochemistry 46(2):331 - 340.