近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1]Tingting Yu, Sanling Yuan*, Tonghua Zhang,The effect of delay interval on the feedback control for a turbidostat model,Journal of the Franklin Institute, 2021, 358(15): 7828-7649.
[2]Shengnan Zhao, Sanling Yuan*, Hao Wang. Adaptive dynamics of a stoichiometric phosphorus-algae-zooplankton model with environmental fluctuations, Journal of Nonlinear Science, 2022, 32: 36.
[3]Yingjie Fei, Shenglong Yang, Wei Fan, Huimin Shi, Han Zhang, Sanling Yuan*, Relationship between the Spatial and Temporal Distribution of Squid-Jigging Vessels Operations and Marine Environment in the North Pacific Ocean, Journal of Marine Science and Engineering, 2022,10: 550.
[4]Anji Yang, Hao Wang, Tonghua Zhang, Sanling Yuan*, Stochastic switches of eutrophication and oligotrophication: modeling extreme weather via non-Gaussian L\'{e}vy noise, Chaos, 2022, 32: 043116.
[5]Shufei Gao, JieJiang, Anglu Shen, Hao Wang, SanlingYuan*, Kinetics ofphosphate uptake in the dinoflagellate Karenia mikimotoi in response toP-stress and temperature, Ecological Modelling, 2022, 468:109909.
[6]Shuai Li, Chengdai Huang, Sanling Yuan*, Hopf Bifurcation of a fractional-order double-ring tructured neural network model with multiple communication delays, Nonlinear Dynamics, 2022, 108(1): 379-396.
[7]Cuihua Wang, Sanling Yuan*, Hao Wang, Spatiotemporal patterns of a diffusive prey-predator model with spatial memory and pregnancy period in an intimidatory environment, Journal of Mathematical Biology, 2022, 84(3):12
[8]Shengnan Zhao, Sanling Yuan*, A coral reef benthic system with grazing intensity and immigrated macroalgae in deterministic and stochastic environments, Mathematical Biosciences and Engineering, 2022, 19(4):3449-3471.
[9]Tianfang Hou, Guijie Lan, Sanling Yuan*, Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate, Mathematical Biosciences and Engineering, 2022, 19 (4): 4217-4236.
[10]Jingen Yang, Sanling Yuan*, Tonghua Zhang, Complex dynamics of a predator-prey system with herd and schooling behavior: with or without delay and diffusion, Nonlinear Dynamics, 2021,104(2):1709-1735.
[11]Han Zhang, Shenglong Yang, Wei Fan, Huimin Shi and Sanling Yuan*, Spatial analysis of the fishing behaviour of tuna purse seiners in the Western and Central Pacific based on vessel trajectory date, Journal of Marine Science and Engineering, 2021, 9: 322.
[12]Jingen Yang, Sanling Yuan*, Dynamics of a toxic producing phytoplankton-zooplankton model with three-dimensional patch, Applied Mathematics Letters, 2021, 118: 107146.
[13]Guijie Lan, Sanling Yuan*, Baojun Song, The impact of hospital resources and environmental perturbations to the dynamics of SIRS model, Journal of the Franklin Institute, 2021, 358(4): 2405-2433.
[14]Yingying Wei, Baojun Song, Sanling Yuan*, Dynamics of a ratio-dependent population model for Green Sea Turtle with age structure, Journal of Theoretical Biology, 2021, 516: 110614.
[15]Shengqiang Zhang, Tonghua Zhang, Sangling Yuan*, Dynamics of a stochastic predator-prey model with habitat complexity and prey aggregation, Ecological Complexity, 2021, 45: 100889.
[16]Chaoqun Xu, Sanling Yuan*, Competition exclusion in a general multi-species chemostat model with stochastic perturbations, Bulletin of Mathematical Biology, 2021, 83(1): 4.
[17]Anji Yang, Baojun Song, Sanling Yuan*, Noise-induced transitions in a non-smooth SIS epidemic model with media alert, Mathematical Biosciences and Engineering, 2020, 18(1):745-763
[18]Changyong Xu, Qiang Li, Tonghua Zhang, Sanling Yuan*, Stability and Hopf Bifurcation for a Delayed Diffusive Competition Model with Saturation Effect, Mathematical Biosciences and Engineering, 2020, 17(6): 8037-8051.
[19]Shuixian Yan, Sanling Yuan*, Critical value in a SIR network model with heterogeneous infectiousness and susceptibility, Mathematical Biosciences and Engineering, 2020, 17(5): 5802-5811.
[20]Yixiu Xia, Sanling Yuan*, Survival analysis of a stochastic predator-prey model with prey refuge and fear effect, Journal of Biological Dynamics, 2020, 14(1): 871-892
[21]Chaoqun Xu, Sanling Yuan*, Richards Growth Model Driven by Multiplicative and Additive Colored Noises: Steady-State Analysis, Fluctuation and Noise Letters, 2020, 19(4): 2050032.
[22]Sanling Yuan*, Dongmei Wu, Guijie Lan, Hao Wang, Noise-induced transitions in a nonsmooth predator-prey model with stoichiometric constraints, Bulleting of Mathematical Biology, 2020, 82(5): 55.
[23]Jingen Yang, Tonghua Zhang, Sanling Yuan*, Turing pattern induced by cross-diffusion in a predator-prey model with pack predation-herd behavior, International Journal of Bifurcation and Chaos, 2020, 30(7): 2050103.
[24]Xingwang Yu, Sanling Yuan*, Asymptotic properties of a stochastic chemostat model with two distributed delays and nonlinear perturbation, Discreteand Continuous Dynamical System-B, 2020, 25(7): 2373-2390.
[25]Shengnan Zhao, Hao Wang, Sanling Yuan*, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, Journal of Differential Equations 268 (2020) 5113-5139.
[26]Dianli Zhao, Sanling Yuan, Noise-induced bifurcations in the stochastic chemostat model with general nutrient uptake functions. Applied Mathematics Letters, 2020, 103: 106180.
[27]Shuixian Yan, DongxueJia, Tonghua Zhang, Sanling Yuan*, Pattern dynamic in a diffusive predator-prey model with hunting cooperations, Chaos, Solitons and Fractals, 2020, 130: 109428.
[28]Dianli Zhao, Haidong Liu, Yanli Zhou, Sanling Yuan, Quadratic harvesting dominated optimal strategy for stochastic single-species model, Journal of Applied Analysis & Computation, 2020,10(4): 1256-1266.
[29]Xingwang Yu, Sanling Yuan*, Tonghua Zhang, Asymptotic properties of stochastic nutrient-plankton food chain models with nutrient recycling, Nonlinear Analysis: Hybrid Systems, 2019, 34: 209-225.
[30]Yu Zhao, Liang You, Daniel Burkow, Sanling Yuan*, Optimal harvesting strategy of a stochastic inshore-offshore hairtail fishery model driven by Lévy jumps in a polluted environment, Nonlinear Dynamics, 2019, 95(2): 1529-1548.
[31]Dianli Zhao, Sanling Yuan, Haidong Liu, Stochastic dynamics of the delayed chemostat with Lévy noises, International Journal of Biomathematics, 2019, 12(5): 1950056.
[32]Dongxue Jia, Tonghua Zhang, Sanling Yuan*, Pattern dynamics of a diffusive toxin producing phytoplankton-zooplankton model with three-dimensional patch, International Journal of Bifurcation and Chaos, 2019, 29(4): 1930011.
[33]Dongmei Wu,Hao Wang, Sanling Yuan*, Stochastic sensitivity analysis of noise-induced transitions in a predator-prey model with environmental toxins, Mathematical Biosciences and Engineering, 2019, 16(4): 2141–2153.
[34]Jie Jiang, Anglu Shen, Hao Wang, Sanling Yuan*, Regulation of phosphate uptake kinetics in the bloom-forming dinoflagellates Prorocentrum donghaiense with emphasis on two-stage dynamic process, Journal of Theoretical Biology, 2019, 463: 12–21.
[35]Xingwang Yu, Sanling Yuan*, Tonghua Zhang, Survival and ergodicity of a stochastic phytoplankton-zooplankton model with toxin producing phytoplankton in an impulsive polluted environment, Applied Mathematics and Computation, 2019, 347: 249–264.
[36]Qiang Li, Sanling Yuan*, Cross-Diffusion Induced Turing Instability for a Competition Model with Saturation Effect, Applied Mathematics and Computation, 2019, 347: 64–77.
[37]Dianli Zhao, Sanling Yuan, Threshold dynamics of the stochastic epidemic model with jump-diffusion infection force, Journal of Applied Analysis and computation, 2019, 9(2): 440-451.
[38]Xuehui Ji, Sanling Yuan*, Tonghua Zhang, Huaiping Zhu, Stochastic modeling of algal bloom dynamics with delayed nutrient recycling, Mathematical Biosciences and Engineering, 2019, 16(1): 1–24.
[39]Chaoqun Xu, Sanling Yuan*, Tonghua Zhang, Confidence domain in the stochastic competition chemostat model with feedback control, Appl. Math. J.Chinese Univ. Ser. B, 2018, 33(4): 379-389.
[40]Xingwang Yu, Sanling Yuan*, Tonghua Zhang, About the optimal harvesting of a fuzzy predator-prey system: Abioeconomic model incorporating a prey refuge and predator mutual interference, Nonlinear Dynamics 94(2018) 2143-2160.
[41]Juan M. Jaramillo Reina, J. Ma, P. van den Driessche, Sanling Yuan, Host contact structure is important for the recurrence of influenza A, Journal of Mathematical Biology 77 (2018) 1563-1588.
[42]Dianli Zhao, Sanling Yuan, Sharp conditions for the existence of a stationary distribution in one classical stochastic chemostat, Applied Mathematics and Computation 339 (2018) 199-205.
[43]Yu Zhao, Liping Zhang, Sanling Yuan*, The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model, Physica A: Statistical Mechanics and its Applications 512 (2018)248-260.
[44]Chaoqun Xu, Sanling Yuan*, Tonghua Zhang, Sensitivity analysis and feedback control of noise-induced extinction for competition chemostat model with mutualism, Physica A: Statistical Mechanics and its Applications505 (2018) 891-902.
[45]Chaoqun Xu, Sanling Yuan*, Tonghua Zhang, Average break-even concentration in a simple chemostat model with telegraph noise, Nonlinear Analysis: Hybrid Systems 29 (2018) 373-382.
[46]Dianli Zhao, Sanling Yuan, Haidong Liu, Random periodic solution for a stochastic SIS epidemic model with constant population size, Advances in Difference Equations 2018 (2018) 64.
[47]39. Xingwang Yu, Sanling Yuan*, Tonghua Zhang, The effects of toxin producing phytoplankton and environmental fluctuations onthe planktonic blooms, Nonlinear Dynamics 2018, 91: 1653-1668.
[48]Shuixian Yan, Yu Zhang, Junling Ma, Sanling Yuan*, An edge-based SIR model for sexually transmitted diseases on the contact network, Journal of Theoretical Biology 439 (2018) 216–225.
[49]Xingwang Yu, Sanling Yuan*, Tonghua Zhang, Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching, Communications in Nonlinear Science and Numerical Simulation 59 (2018) 359-374.
[50]Yu Zhao, Mingtao Li, Sanling Yuan*, Analysis of Transmission and Control of Tuberculosis in Mainland China, 2005-2016, Based on the Age-Structure Mathematical Model, International Journal of Environmental Research and Public Health 14 (2017) 1192.
[51]Xuehui Ji, Sanling Yuan*, Jiao Li, Stability of a stochastic SEIS model with saturation incidence and latent period, Journalof Applied Analysis and Computation 7(4) (2017) 1652-1673.
[52]Sanling Yuan*, Xuehui Ji and Huaiping Zhu, Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations, Mathematical Biosciencesand Engineering 14 (2017) 1477-1498.
[53]Yu Zhao, Sanling Yuan*, Optimal harvesting policy of a stochastic two-species competitive model with Levy noise in apolluted environment, Physica A: Statistical Mechanics and its Applications 477 (2017) 20-33.
[54]Yu Zhao, Sanling Yuan*, Tonghua Zhang, Stochastic periodic solution of a non-autonomous toxic-producing phytoplankton allelopathy model with environmental fluctuation, Communications in Nonlinear Science and Numerical Simulation 44 (2017) 266-276.
[55]Xichao Duan, Sanling Yuan*, Global dynamics of an age-structured virus model with saturation effects, Mathematical Methods inApplied Sciences 40 (2017) 1851-1864.
[56]Dianli Zhao, Sanling Yuan, Break-even concentration and periodic behavior of a stochastic chemostat model with seasonal fluctuation, Communications in Nonlinear Science and Numerical Simulation 46 (2017) 62-73.
[57]Dianli Zhao, Sanling Yuan, Dynamics of delayed stochastic predator-prey models with feedback controls based on discrete observations, International Journal of Biomathematics 10(3) (2017) 1750040.
[58]Dianli Zhao, Sanling Yuan, Persistence and stability of the disease-free equilibrium in a stochastic epidemic model with imperfect vaccine, Advances in Difference Equations 2016 (2016) 280.
[59]Chaoqun Xu, Sanling Yuan*, Competition in the chemostat: a stochastic multi-species model and its asymptotic behavior, Mathematical Biosciences 280 (2016) 1-9.
[60]Chaoqun Xu, Sanling Yuan*, Tonghua Zhang, Global dynamics of a predator-prey model with defence mechanism for prey, Applied Mathematics Letters 62(2016) 42-48.
[61]Chaoqun Xu, Sanling Yuan*, Tonghua Zhang, Stochastic sensitivity analysis for a competition turbidostat model with inhibitory nutrient, International Journal of Bifurcation and Chaos 26(10)(2016) 1650173.
[62]Xichao Duan, Sanling Yuan*, Kaifa Wang, Dynamics of a diffusive age-structured HBV model with saturating incidence, Mathematical Biosciences and Engineering13(5) (2016) 935-968.
[63]Dianli Zhao, Sanling Yuan, Dynamics of the stochastic Leslie–Gower predator–prey system with randomized intrinsic growth rate, Physica A: Statistical Mechanics and its Applications 461 (2016) 419-428.
[64]Xuehui Ji, Sanling Yuan*, Huaiping Zhu, Analysisof a stochastic model for algal bloom with nutrient recycling, International Journal of Biomathematics 8 (3) (2016) 1650083.
[65]Yu Zhao, Sanling Yuan*, Qimin Zhang, The effect of Lévy noise on the survival of a stochastic competitive model in an impulsive polluted environment, Applied Mathematical Modelling 40 (2016) 7583-7600.
[66]Yu Zhao, Sanling Yuan*, Stability indistribution of a stochastic hybrid competitive Lotka-Volterra model with Lévy jumps, Chaos, Solitons & Fractals 85 (2016)98-109.
[67]Yu Zhao, Sanling Yuan*, Tonghua Zhang, The stationary distribution and ergodicity of a stochastic phytoplankton allelopathy model under regime switching. Communications in Nonlinear Scienceand Numerical Simulation 37 (2016) 131-142.
[68]Sanling Yuan, P. van den Driessche, Frederick H. Willeboordse, Z. Shuai and J. Ma, Disease Invasion Risk in a Growing Population, Journal of Mathematical Biology 73 (2016) 665-681.
[69]Dianli Zhao, Sanling Yuan, Critical result on the break-even concentration in a single-species stochastic chemostat model, Journal of Mathematical Analysis and Applications 434 (2) (2016) 1336-1345.
[70]Yanli Zhou, Sanling Yuan, Dianli Zhao, Threshold behavior of a stochastic SIS model with Lévy jumps, Applied Mathematics and Computation 275 (2016) 255-267.
[71]Dianli Zhao,Tiansi Zhang, Sanling Yuan, Thethreshold of a stochastic SIVS epidemic model with nonlinear saturated incidence, Physica A: Statistical Mechanics and its Applications 443 (1) (2016)372-379.
[72]Chaoqun Xu, Sanling Yuan*, Spatial periodic solutions in a delayed diffusive predator–prey model with herd behavior, International Journal of Bifurcation and Chaos 25 (11) (2015) 1550155.
[73]Chaoqun Xu, Sanling Yuan*, An analogue of break-even concentration in a simple stochastic chemostat model, Applied Mathematics Letters 48 (2015) 62-68.
[74]Yu Zhao, Sanling Yuan*, Junling Ma, Survival and Stationary Distribution Analysis of a Stochastic Competitive Model of ThreeSpecies in a Polluted Environment, Bulletin of Mathematical Biology 77 (2015) 1285-1326.
[75]Yu Zhao, Sanling Yuan*, Qimin Zhang, Numerical solution of a fuzzy stochastic single-species age-structure model in a polluted environment, Applied Mathematics and Computation 260 (2015) 385-396.
[76]Xuehui Ji, Sanling Yuan*, Lansun Chen, A pest control model with state-dependent impulses, International Journal ofBiomathematics 8 (2015) 1550009.
[77]Dianli, Zhao, Sanling Yuan, A note on persistence and extinction of a randomized food-limited logistic population model, Applied Mathematics and Computation 246 (2014) 599-607.
[78]Yanli Zhou,Weiguo Zhang, Sanling Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Applied Mathematics and Computation 244 (2014) 118-131.
[79]Xichao Duan, Sanling Yuan*, Zhipeng Qiu, Junling Ma, Global stability of an SVEIR epidemic model with ages of vaccination and latency, Computers and Mathematics with Applications 68 (2014) 288-308.
[80]Dianli Zhao, Sanling Yuan, Improved stability conditions for a class of stochastic Volterra-Levin equations, Applied Mathematics and Computation 231 (2014) 39-47.
[81]Yanli Zhou, Weiguo Zhang, Sanling Yuan, Hongxiao Hu, Persistence and extinction in stochastic SIRS models with general nonlinear incidence rate, Electronic Journal of Differential Equations 2014 (2014) 42.
[82]Chaoqun Xu, Sanling Yuan*, Stability and Hopf bifurcation in a delayed predator-prey system with herd behavior, Abstract andApplied Analysis 2014 (2014) 568943.
[83]Xuehui Ji, Sanling Yuan*, Dynamics of a stochastic functional system for wastewater treatment, Abstract and Applied Analysis 2014(2014) 831573.
[84]Xichao Duan, Sanling Yuan*, Xuezhi Li, Global stability of an SVIR model with age of vaccination, Applied Mathematics and Computation 226 (2014) 528-540.
[85]Dianli Zhao, Sanling Yuan, 3/2-stability conditions for a class of Volterra-Levin equations, Nonlinear Analysis-Theory Methods& Applications 94 (2014) 1-11.
[86]Sanling Yuan*, Chaoqun Xu,Tonghua Zhang, Spatial dynamics in a predator-prey model with herd behavior, CHAOS 23 (2013) 033102.
[87]Yanli Zhou, Weiguo Zhang, Sanling Yuan*, Survival and Stationary Distribution in a Stochastic SIS Model, Discrete Dynamics in Nature and Society 2013 (2013) 592821.
[88]Chaoqun Xu, Sanling Yuan*, Tonghua Zhang, Asymptotic behavior of a chemostat model with stochastic perturbation on thedilution rate, Abstract and Applied Analysis 2013 (2013) 423154.
[89]Sanling Yuan*, Tonghua Zhang, Dynamics of a plasmid chemostat model with periodic nutrient input and delayed nutrient recycling, Nonlinear Analysis: Real World Applications 13 (2012)2104-2119.
[90]Sanling Yuan*, Yu Zhao, Anfeng Xiao and Tonghua Zhang, Bifurcation and chaos in a pulsed plankton model with instantaneous nutrient recycling, Rouky Mountain Journal of Mathematics 42 (2012) 1387-1409.
[91]Sanling Yuan*, Pan Li, Yongli Song, Delay induced oscillations in a turbidostat with feedback control, Journal of Mathematical Chemistry 49 (2011) 1646-1666.
[92]Bo Li, Sanling Yuan*, Weiguo Zhang, Analysis on an epidemic model with a ratio-dependent nonlinear incidence rate, International Journal of Biomathematic 4 (2011) 227-239.
[93]Sanling Yuan*, Weiguo Zhang, Yu Zhao, Bifurcation analysis of a model of plasmid-bearing, plasmid-free competition in a pulsed chemostat with an internal inhibitor, IMA Journal ofApplied Mathematics 76 (2011) 277−297.
[94]Sanling Yuan*, Yongli Song, Junhu iLi, Oscillations in a plasmid turbidostat model with delayed feedback control, Discrete and Continuous Dynamical Systems-Series B 15 (2011) 809-914.
[95]Sanling Yuan*, Pan Li, Stability and direction of Hopf bifurcations in a pair of identical tri-neuron network loops, NonlinearDynamics 61 (2010) 569-578.
[96]Xiangzheng Li, Weiguo Zhang, Sanling Yuan, LS method and qualitative analysis of traveling wave solutions of Fisher equation, Acta Physica Sinica 52(2) (2010) 744-749.
[97]Sanling Yuan*, Yongli Song, Bifurcation and stability analysis for a delayed Leslie–Gower predator–prey system, IMA Journal of Applied Mathematics 74 (2009)574-603.
[98]Sanling Yuan*, Weiguo Zhang, Maoan Han, Global asymptotic behavior in chemostat-type competition models with delay, NonlinearAnalysis: Real World Applications 10 (2009) 1305-1320.
[99]Sanling Yuan*, Bo Li, Global dynamics of an epidemic model with a ratio-dependent nonlinear incidence rate, Discrete Dynamics in Nature and Society 2009 (2009)609306.
[100]Sanling Yuan*, Yu Zhao, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with pulsed input and washout, Mathematical Problems in Engneeing 2009 (2009) 204632.
[101]Jianmei Luo, Sanling Yuan*, Weiguo Zhang, Competition between two microorganisms in the chemostat with general variableyields and general growth rates, International Journal of Biomathematics 1(4) (2008) 463-474.
[102]Yongli Song, Sanling Yuan*, Bifurcation analysis for a regulated logistic growth model, Applied Mathematical Modelling 31 (2007)1729–1738.
[103]Sanling Yuan*, Dongmei Xiao, Maoan Han, Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor, Mathematical Biosciences202 (2006) 1-28.
[104]Yongli Song, Sanling Yuan, Bifurcation analysis in a predator–prey system with time delay, Nonlinear Analysis: Real World Applications 7 (2006) 265-284.
[105]Sanling Yuan*, Zhien Ma, Maoan Han, Global Stability on an SIS Epidemic Model with Time Delays, Acta Mathematica Scientia 25A (3) (2005) 349-356.
[106]Sanling Yuan*, Maoan Han, Bifurcation analysis of a chemostat model with two distributed delays, Chaos, Solitons and Fractals 20 (2004) 995-1004.
[107]Sanling Yuan*, Yongli Song, Maoan Han, Direction and stability of bifurcating periodic solutions of a chemostat model with two distributed delays, Chaos, Solitons and Fractals 21 (2004) 1109-1123.
[108]Sanling Yuan*, maoan Han, Zhien Ma, Competition in thechemostat: convergence of a model with delayed response in growth, Chaos,Solitons and Fractals 17 (2003) 659-667.
[109]Sanling Yuan*, Zhien Ma, Zhen Jin, Persistence and periodic solution on a non-autonomous SIS Model with delays, Acta MathematicaeApplicatae Sinica 19 (2003) 1-10.
[110]Sanling Yuan*, Litao Han, Zhien Ma, Analysis of an SIS epidemic model with variable population size and a delay, Appl. Math. J. Chinese Univ. Ser. B 18 (2003) 9-16.
[111]Sanling Yuan*, Zhien Ma, Study on an SIS epidemic model with time variant delay, System Science and Complexity 15 (2002) 299-306.
[112]Sanling Yuan*, Zhien Ma, Global stability and Hopf bifurcation of an SIS epidemic model with time delays, System Science andComplexity 14 (2001) 327-336.