个人简介
李敏,女,1985年7月生。2004年至2008年就读于山东大学(威海),获理学学士学位,2008年保送至北京邮电大学硕博连读,2013年获工学博士学位,同年7月进入华北电力大学工作。2013年10月获讲师职称,2015年7月被评为硕士研究生导师,2017年4月被评为副教授。
主要利用数学的解析方法研究应用于光纤通信、流体力学、等离子体物理等领域中的非线性偏微分方程的解析解及可积性质,并借助数值方法和图像分析研究解的稳定性及孤子动力学机制。发表第一作者SCI检索论文20余篇。主持国家自然科学基金项目2项(青年科学基金和数学天元基金各1项)、中央高校基本科研业务费项目2项;参与中央高校基本科研业务费2项(重点项目和重大项目各1项)。特别地,发表在Applied Mathematics Letters上题为“Generation mechanism of rogue waves for the discrete nonlinear Schrödinger equation” 入选2019年ESI高被引论文,发表在Physical Review E 上题为“Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time -symmetric potential”论文进入2018年Scopus数据库检索中被引情况全球前 1%,发表在Applied Mathematics Letter 上题为“Nonautonomous solitons and interactions for a variable-coefficient resonant nonlinear Schrodinger equation”的论文入选2018年ESI高被引论文,并且以合作者身份发表在Applied Mathematics Letter 上题为“Darboux transformation and analytic solutions of the discrete PT-symmetric nonlocal nonlinear Schrodinger equation”的论文入选2018年ESI高被引论文。主要科研项目情况
[1]国家自然科学基金青年基金项目,基于零模间色散双芯光子晶体光纤的飞秒脉冲全光孤子开关研究,2016/01-2018/12,23.64万元,主持
[2]国家自然科学基金天元专项基金项目,非零边界条件下扰动导数非线性薛定谔方程的解析和数值研究,2015/01-2015/12,3万元,主持
[3]教育部中央高校基本科研业务专项资金面上项目,基于调制的PT对称非线性双芯耦合器的全光孤子开关研究,2017/01-2019/10,5万元,主持
[4]教育部中央高校基本科研业务专项资金青年项目,多芯光子晶体光纤中超短脉冲及开关效应研究,2014/01-2015/12,3万,主持
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1]Min Li, Xiaolu Yue, Tao Xu. Multi-pole solutions and their asymptotic analysis of the integrable
Ablowitz-Ladik equation.Physica Scripta, online (2019)
[2]Min Li, Juan-Juan Shui and Tao Xu. Generation mechanism of rogue waves for the discrete nonlinear Schrödinger equation. Applied Mathematics Letters 83,110-115 (2018)
[3]Min Li, Juan-Juan Shui, Ye-Hui Huang, Lei Wang and Heng-Ji Li. Localized-wave interactions for the discrete nonlinear Schrödinger equation under the nonvanishing background. Physica Scripta, 93, 115203 (2018)
[4]Min Li, Tao Xu and Dexin Meng. Rational Solitons in the Parity-Time-Symmetric Nonlocal Nonlinear Schrödinger Model. Journal of the Physical Society of Japan 85,124001 (2016).
[5] Min Li, Lei Wang and Feng-Hua Qi. Nonlinear dynamics of a generalized higher-order nonlinear Schrodinger equation with a periodic external perturbation. Nonlinear Dynamics 86,535-541 (2016).
[6]Min Li, Tao Xu, Lei Wang and Feng-Hua Qi. Nonautonomous solitons and interactions for a variable-coefficient resonant nonlinear Schrodinger equation. Applied Mathematics Letters 60,8-13 (2016).
[7]Min Li, Huan Liang, Tao Xu and Chang-jing Liu. Vector roguewaves in themixed coupled nonlinear Schrodinger equations. The European Physical Journal Plus 131,100 (2016).
[8]Min Li, Tao Xu and Lei Wang. Direct perturbation analysis on the localized waves of the modified nonlinear Schrödinger equation under nonvanishing boundary condition. Modern Physics Letters B 30,1650179 (2016).
[9]Min Li and Tao Xu. Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential. Physical Review E 91,033202 (2015).
[10]Min Li, Tao Xu and Lei Wang. Dynamical behaviors and soliton solutions of a generalized higher-order nonlinear Schrödinger equation in optical fibers. Nonlinear Dynamics 80,1451-1461 (2015).
[11]Min Li, Jing-Hua Xiao, Wen-Jun Liu, Pan Wang, Bo Qin and Bo Tian. Mixed-type vector solitons of the N-coupled mixed derivative nonlinear Schrödinger equations from optical fibers. Physical Review E 87,032914 (2013).
[12]Min Li, Jing-Hua Xiao, Bo Qin, Ming Wang, Bo Tian. Vector–soliton bound states for the coupled mixed derivative nonlinear Schrödinger equations in optical fibers. Wave Motion 50, 1-10 (2013).
[13]Min Li, Jing-Hua Xiao, Ming Wang, Yu-Feng Wang, Bo Tian. Soliton management for a forced extended Korteweg-de Vries equation with variable coefficients in fluids. Zeitschrift für Naturforschung A-A Journal of Physical Sciences 68a,235-244 (2013).
[14]Min Li, Jing-Hua Xiao, Tian-Zhong Yan and Bo Tian. Integrability and soliton interactions of a resonant nonlinear Schrödinger equation via binary Bell polynomials. Nonlinear Analysis: Real World Applications 14,1669-1679 (2013).
[15]Min Li, Jing-Hua Xiao, Wen-Jun Liu, Yan Jiang, Bo Tian. Triple Wronskian solutions of the coupled derivative nonlinear Schrödinger equations in optical fibers. Communications in Nonlinear Science and Numerical Simulation 17, 2845-2853 (2012).
[16]Min Li, Jing-Hua Xiao, Yan Jiang, Ming Wang, Bo Tian. Bound-state dark/antidark solitons for the coupled mixed derivative nonlinear Schrödinger equations in optical fibers. The European Physical Journal D 66,297 (2012).
[17]Min Li, Jing-Hua Xiao, Wen-Jun Liu, Yan Jiang, Kun Sun, Bo Tian. Breather and double-pole solutions of the derivative nonlinear Schrödinger equation from optical fibers. Physics Letters A 375, 549-557 (2011).
[18]Min Li, Bo Tian, Wen-Jun Liu, Hai-Qiang Zhang and Pan Wang. Dark and antidark solitons in the modified nonlinear Schrödinger equation accounting for the self-steepening effect. Physical Review E 81, 046606: 1-8 (2010).
[19]Min Li, Bo Tian, Wen-Jun Liu, Yan Jiang and Kun Sun. Dark and anti-dark vector solitons of the coupled modified nonlinear Schrödinger equations from the birefringent optical fibers. The European Physical Journal D 59, 279-289 (2010).
[20]Min Li, Bo Tian, Wen-Jun Liu, Hai-Qiang Zhang, Xiang-Hua Meng, Tao Xu. Soliton-like solutions of a derivative nonlinear Schrödinger equation with variable coefficients in inhomogeneous optical fibers. Nonlinear Dynamics 62, 919-929 (2010).
[21]Min Li, Bo Tian, Wen-Jun Liu, Kun Sun, Yan Jiang and Zhi-Yuan Sun. Conservation laws and soliton solutions for a nonlinear Schrödinger equation with self-consistent sources in plasmas. Physica Scripta 81, 045008: 1-10 (2010).