当前位置: X-MOL首页全球导师 国内导师 › 彭丽

个人简介

彭丽,女,1988年9月出生,博士研究生,副教授 教育经历 2007.09-2011.06,衡阳师范学院,本科,数学与应用数学专业 2011.09-2014.06,湘潭大学,硕士研究生,应用数学专业,导师:周勇 2014.09-2017.06,湘潭大学,博士研究生,数学专业,导师:周勇 工作经历 2017.10-2019.10,湘潭大学数学与计算科学学院,博士后 2019.05-至今,湘潭大学数学与计算科学学院,教师

研究领域

泛函微分方程、分数阶微分方程、分数阶偏方程

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Li Peng, Yunqing Huang. On nonlocal backward problems for fractional stochastic diffffusion equations. Computers and Mathematics with Applications (2019), Accept. Li Peng, Yong Zhou, A. Debbouche. Approximation techniques of optimal control problems for fractional dynamic systems in separable Hilbert spaces. Chaos, Solitons and Fractals, 118(2019),234-241. Li Peng, Yong Zhou, B. Ahmad. The well-posedness for fractional nonlinear Schrödinger equations. Computers and Mathematics with Applications, 77(7)(2019): 1998-2005. Li Peng, A. Debbouche, Yong Zhou. Existence and approximations of solutions for time-fractional Navier-Stokes equations. Mathematical Methods in the Applied Sciences, 41(2018),8973-8984. Yong Zhou, Li Peng, Yunqing Huang. Existence and Hölder continuity of solutions for time-fractional Navier-Stokes equations. Mathematical Methods in the Applied Sciences, 41(2018),7830-7838. Yong Zhou, Li Peng, Yunqing Huang. Duhamel’s formula for time-fractional Schrödinger equations. Mathematical Methods in the Applied Sciences, 41(2018), 8345-8349. Li Peng, Yong Zhou, B. Ahmad, A. Alsaedi. The Cauchy problem for fractional Navier-Stokes equations in Sobolev spaces. Chaos, Solitons and Fractals, 102 (2017),218-228. Yong Zhou, Li Peng. Weak solutions of the time-fractional Navier-Stokes equations and optimal control. Computers and Mathematics with Applications, 73(6)(2017),1016-1027. Yong Zhou, Li Peng, On the time-fractional Navier-Stokes equations, Computers & Mathematics with Applications, 73(2017),874-891. Yong Zhou, Li Peng, B. Ahmad, A. Alsaedi. Energy methods for fractional Navier-Stokes equations. Chaos, Solitons and Fractals, 102(2017),78-85. Yong Zhou, Li Peng, B. Ahmad, A. Alsaedi. Topological properties of solution sets of fractional stochastic evolution inclusions. Advances in Difffference Equations, 2017(2017),90-119. Yong Zhou, Li Peng. Topological structure of solution sets for semilinear evolution inclusions. Zeitschrift füer Analysis und Ihre Anwendungen, 37(2) (2018),189-208. Yong Zhou, Li Peng. Topological properties of solutions set for partial functional evolution inclusions. Comptes Rendus Mathematique, 355(2017),45-64. Yong Zhou, Li Peng, B. Ahmad. Topological properties of solution sets for stochastic evolution inclusions. Stochastic Analysis and Applications, 36(1)(2017),114-137. Jia Mu, Yong Zhou, Li Peng. Periodic solutions and S-asymptotically periodic solutions to fractional evolution equations, Discrete Dynamics in Nature and Society, 2017(2017), Article ID 1364532. Li Peng, Yong Zhou, Bifurcation from interval and positive solutions of the three-point boundary value problem for fractional difffferential equations, Applied Mathematics & Computation, 257(C)(2015): 458-466. Yong Zhou, Rongnian Wang, Li Peng. Topological Structure of the Solution Set for Evolution Inclusions. Vol. 51. Springer, 2017.

推荐链接
down
wechat
bug