个人简介
在研课题
1.主持浙江省自然科学基金探索项目“低秩逼近算法及应用”,编号:LQ20F030016,执行时间:2020.1-2022.12.
2.参与浙江省自然科学基金重点项目“深度学习的逼近理论、方法与应用”,编号:LZ20F030001,执行时间:2020.1-2023.12.
个人简历
叶海良,博士,校聘副教授。2015年硕士毕业于中国计量学院(现中国计量大学)应用数学专业,2019年博士毕业于华中科技大学计算数学专业。现为中国计量大学理学院应用数学系教师。近年来,在《IEEETransactionsonImageProcessing》、《IEEETransactionsonGeoscienceandRemoteSensing》、《NeuralNetworks》、《InformationSciences》、《ExpertSystemswithApplications》等国际SCI期刊发表论文多篇。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. H. L. Ye, H. Li, C. L. P. Chen, Adaptive deep cascade broad learning system and its application in image denoising, IEEE Transactions on Cybernetics, 2020, doi: 10.1109/TCYB.2020.2978500. (SCI, Top期刊)
2. H. L. Ye, F. L. Cao, D. H. Wang, A hybrid regularization approach for random vector functional-link networks, Expert Systems With Applications, 2020, 140: 112912. (SCI, Top期刊)
3. H. L. Ye, H. Li, F. L. Cao, L. M. Zhang, A hybrid truncated norm regularization method for matrix completion, IEEE Transactions on Image Processing, 2019, 28(10): 5171-5186. (SCI, Top期刊)
4. H. L. Ye, H. Li, B. Yang, F. L. Cao, Y. Y. Tang, A novel rank approximation method for mixture noise removal of hyperspectral images, IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7): 4457-4469. (SCI, Top期刊)
5. H. L. Ye, F. L. Cao, D. H. Wang, H. Li, Building feedforward neural networks with random weights for large scale datasets, Expert Systems With Applications, 2018, 106: 233-243. (SCI, Top期刊)
6. F. L. Cao, J. Y. Chen, H. L. Ye, J. W. Zhao, Z. H. Zhou, Recovering low-rank and sparse matrix based on the truncated nuclear norm learning systems, Neural Networks, 2017, 85: 10-20. (SCI,Top期刊)
7. F. L. Cao, H. L. Ye, D. H. Wang, A probabilistic learning algorithm for robust modeling using neural networks with random weights, Information Sciences, 2015, 313: 62-78. (SCI, Top期刊)
学术兼职
现主持浙江省自然科学基金1项,先后参与多项国家自然科学基金和省自然科学基金项目。担任《IEEETransactionsonCircuitsandSystemsforVideoTechnology》、《IEEETransactionsonImageProcessing》等多个国际学术刊物审稿人。