近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Wang, Z., Ke, Y.*, Chen, M., Zhou, D., Zhu, L. Bai, J (2021). Mapping coastal wetlands in Yellow River Delta, China during 2008-2019: impacts of valid observations, harmonic regression, and critical months. International Journal of Remote Sensing. Accepted.
Xu, R., Zhao S., Ke, Y.* (2020). A Simple Phenology-Based Vegetation Index for Mapping Invasive Spartina alterniflora Using Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2020, 190 – 201.
Jiang, Y., Wang Y., Zhou, D*., Ke, Y.*, Bai, J., Li, W., Yan, J. (2020). The Impact Assessment of Hydro-Biological Connectivity changes on the Estuary Wetland through the Ecological Restoration Project in the Yellow River Delta, China. Science of the Total Environment. 2020, 11, https://doi.org/10.1016/j.scitotenv.2020.143706.
Li, P., Ke, Y.*, Chen, M., Lyu, M., Zhou, D* (2020). Human impact on suspended particulate matter in the Yellow River Estuary, China: Evidence from remote sensing data fusion using an improved spatiotemporal fusion method. Science of the Total Environment. 750, 141612.
Chen, M., Ke, Y.*, Li, P., Lyu, M., Zhou, D* (2020). Monitoring early stage invasion of exotic Spartina alterniflora using deep-learning super-resolution techniques based on multisource high-resolution satellite imagery: A case study in the Yellow River Delta, China. International Journal of Applied Earth Observation and Geoinformation, 92, 102180.
Fan, Y., Zhou, D. *, Ke, Y.*, Wang, Y., Wang, Q., Zhang, L. (2020). Quantifying the Correlated Spatial Distributions between Tidal Creeks and Coastal Wetland Vegetation in the Yellow River Estuary. Wetlands. https://doi.org/10.1007/s13157-020-01292-7.
Liu, M.; Ke, Y.*; Yin, Q.; Chen, X.; Im, J (2019). Comparison of Five Spatio-Temporal Satellite Image Fusion Models over Landscapes with Various Spatial Heterogeneity and Temporal Variation. Remote Sensing, 11, 2612. https://doi.org/10.3390/rs11222612.
Lyu, M., Ke, Y.*, Guo, L., Li, X., Zhu, L., Gong, H.; Constantinos, C (2019). Change in regional land subsidence in Beijing after south-to-north water diversion project observed using satellite radar interferometry. GIScience & Remote Sensing, 10, 1-17. https://doi.org/10.1080/15481603.2019.1676973.
Li, P., Ke, Y.*, Bai, J., Zhang, S., Chen, M., & Zhou, D. (2019). Spatiotemporal dynamics of suspended particulate matter in the Yellow River Estuary, China during the past two decades based on time-series Landsat and Sentinel-2 data. Marine Pollution Bulletin, 149, 110518. https://doi.org/10.1016/j.marpolbul.2019.110518.
Yin, Q.; Liu, M.; Cheng, J.; Ke, Y.*; Chen, X (2019). Mapping Paddy Rice Planting Area in Northeastern China Using Spatiotemporal Data Fusion and Phenology-Based Method. Remote Sensing, 11, 1699. https://doi.org/10.3390/rs11141699.
Wang, M.; Du, L.; Ke, Y.*; Huang, M.; Zhang, J.; Zhao, Y.; Li, X.; Gong, H (2019). Impact of Climate Variabilities and Human Activities on Surface Water Extents in Reservoirs of Yongding River Basin, China, from 1985 to 2016 Based on Landsat Observations and Time Series Analysis. Remote Sensing, 2019, 11, 560.
Yang, Q.; Ke, Y.*; Zhang, D.; Chen, B.; Gong, H.; Lv, M.; Zhu, L.; Li, X (2018). Multiscale Analysis of the Relationship between Land Subsidence and Buildings: A Case Study in an Eastern Beijing Urban Area Using the PS-InSAR Technique. Remote Sensing, 10, 1006. https://doi.org/10.3390/rs10071006.
Zhang, P.; Ke, Y.*; Zhang, Z.; Wang, M.; Li, P.; Zhang, S (2018). Urban Land use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery. Sensors, 18, 3717. https://doi.org/10.3390/s18113717.
Liu, Y., Zhang, Z.*, Zhong, R., Chen, D., Ke, Y., Peethambaran, J., Sun, L. (2018). Multilevel Building Detection Framework in Remote Sensing Images Based on Convolutional Neural Networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 99, 1-13.
Ke, Y., Im, J.*, Park, S., & Gong, H. (2017). Spatiotemporal downscaling approaches for monitoring 8-day 30m actual evapotranspiration. ISPRS Journal of Photogrammetry and Remote Sensing, 126, 79-93.
Deng, Z., Ke, Y.*, Gong, H., Li, X., & Li, Z. (2017). Land subsidence prediction in Beijing based on PS-InSAR technique and improved Grey-Markov model. GIScience & Remote Sensing, 1-22. https://doi.org/10.1080/15481603.2017.1331511.
Ke, Y., Im, J.*, Park, S., & Gong, H. (2016). Downscaling of MODIS One kilometer evapotranspiration using Landsat-8 data and machine learning approaches. Remote Sensing, 8(3), 215.
Li, D., Ke, Y.*, Gong, H., & Li, X. (2015). Object-based urban tree species classification using bi-temporal worldview-2 and worldview-3 images. Remote Sensing, 7(12), 16917-16937.
Ke, Y., Im, J.*, Lee, J., Gong, H., & Ryu, Y. (2015). Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sensing of Environment, 164, 298-313.
Ke, Y., Leung, L. R.*, Huang, M., & Li, H. (2013). Enhancing the representation of subgrid land surface characteristics in land surface models. Geoscientific Model Development, 6(5), 1609-1622.
Ke, Y.*, Coleman, A. M., & Diefenderfer, H. L. (2013). Temporal land cover analysis for net ecosystem improvement. Ecohydrology & Hydrobiology, 13(1), 84-96.
Ke, Y., Leung, L. R.*, Huang, M., Coleman, A. M., Li, H., & Wigmosta, M. S. (2012). Development of high resolution land surface parameters for the Community Land Model. Geoscientific Model Development, 5(6), 1341-1362.
Ke, Y., and Quackenbush, L.J.* (2011). A comparison of three methods for automatic tree crown detection and delineation from high spatial resolution imagery. International Journal of Remote Sensing, 32, 3625-3647.
Ke, Y., and Quackenbush, L.J*., (2011). A review of methods for automatic individual tree crown detection and delineation. International Journal of Remote Sensing, 32, 4725-4747.
Ke, Y., Quackenbush, L.J.*, Im, J. (2010). Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification. Remote Sensing of Environment, 114(6), 1141–1154.
Ke, Y., Zhang, W. and Quackenbush, L.J.* (2010). Active contour and hill-climbing for tree crown detection and delineation. Photogrammetric Engineering and Remote Sensing, 76(10): 1169–1181.
Zhang, W., Ke, Y., Quackenbush, L.J.* and Zhang, L. (2010). Using error-in-variable regression to predict tree diameter and crown width from remotely sensed imagery. Canadian Journal of Forest Research, 2010, 40:1095-1108.
Huang, M., Hou, Z., Leung, L. R., Ke, Y., Liu, Y., Fang, Z., & Sun, Y. (2013). Uncertainty analysis of runoff simulations and parameter identifiability in the community land model: evidence from MOPEX basins. Journal of Hydrometeorology, 14(6), 1754-1772.
Li, H., Wigmosta, M. S., Wu, H., Huang, M., Ke, Y., Coleman, A. M., & Leung, L. R. (2013). A physically based runoff routing model for land surface and earth system models. Journal of Hydrometeorology, 14(3), 808-828.
李丹, 柯樱海*,宫辉力,李小娟,邓曾 (2015). 基于高分辨率遥感影像的城市典型乔木树种分类研究[J]. 地理与地理信息科学.32(1),42-46.
邓曾, 柯樱海*, 吴燕晨,李小娟,宫辉力 (2015). 基于改进SVM算法的高分辨率遥感影像分类[J]. 国土资源遥感. 28(3), 12-18.
李映辰,柯樱海*,宫辉力,李小娟,陈蓓蓓.DEM对PS-InSAR地面沉降监测的影响[J].测绘科学,2018,43(01):124-134.
张婉婉,柯樱海*,邓曾,陈蓓蓓,宫辉力,李小娟 (2018).基于多源SAR数据的京津高铁北京段垂向形变监测[J].中国科技论文, 13(02):235-240.
杨琴,柯樱海*,李小娟,宫辉力,邹君.湖南省水资源脆弱性时空演变研究[J].河南理工大学学报(自然科学版),2018,37(03):79-85.